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ABSTRACT 

A general theory of binary sequences with desir- 
able correlation properties i s  developed for application to 
the design of digital communication systems. The undep 
lying mathematical problems are the existence, construction, 
and properties of “orthogonal matrices” or, a s  they are 
also known, “Hadamard designs.” The first detailed appli- 
cation is to the design of a ranging system with 
unambiguous, high-precision resolution over interplanetary 
distances which can nonetheless be quickly synchronized 
and yield i ts  range data in real time. The second major 
application is to the design and analysis of optimum digital 
telemetry systems. It i s  shown that for several categories 
of codes with suitable orthogonality properties, the theo- 
retical bound on the information rate i s  actually approached, 
as  the number of code words increases, for specific input 
sign al-to-noi se conditions. 
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1. INTRODUCTION 

Historically, the basic mathematical tool in radio communication theory has  been Fourier time-and-frequency 

analysis. The R F  signal i s  generally regarded as a linear combination of sine waves; and the classical concept of 

modulation involves the variation of one of the three parameters (amplitude, frequency, or phase) associated with a 

pure sine wave so as to carry information. 

In recent years there h a s  been increasing emphasis on so-called digital communications. For purposes of 

this report, the digital signal may be regarded conceptually a s  a sequence of ones and zeros or of ones and minus 

ones.  In actual practice, there could be either a pulse  train in which one i s  a pulse and zero i s  a no-pulse, or a high- 

frequency sine wave (called a continuous wave or CW signal) for which one is a phase s h i f t  of +90° and minus one is 

a phase shift of -90°, each lasting unit duration. From the classical standpoint, the pulse/no-pulse sequence is an 

amplitude-modulated square wave, while the +goo/-90° sequence i s  a phase-modulated sine wave. 

In changing the emphasis from the study of sine waves to the study of binary sequences (i.e., sequences of 

ones and zeros or of ones and minus o n e s ) ,  certain facts have stood out. One of the important properties of sine 

waves is that all the harmonics sin nx of the fundamental sin x are mutually orthogonal on the standard interval 

(0, 277). Also, sin x is orthogonal to two of i t s  phase shifts, cos x and -cos x .  It has  been found that orthogonality 

properties of this sort  are among the most desirable attributes of signals in a wide variety of communications 

situations. 

In statist ical  terms, orthogonal means uncorrelated. Whenever one has  a set  of possible messages to encode 

for a communication link, one would like their encoded forms to be as mutually distinct as possible. This is approxi- 

mately achieved in the orthogonal or uncorrelated case. If one has  two or more messages to encode, i t  will be seen 

that i t  is actually possible to achieve mutual negative correlation among them; but as the number of messages 

increases, the negative correlation coefficients tend to zero. 

Section I1 of th i s  report is devoted to the existence and construction of orthogonal and transorthogonal s e t s  

of code words. A s  is so often the case with discrete problems of this sort, there are simple upper bounds to the 

parameters in question; but owing to combinatorial limitations, the attainment of these bounds does not occur in all 

cases. 

In special cases, the cyclic phase shifts of a single sequence form an approximately orthogonal collection of 

code words. This is of particular importance for applications to range radar, where the amount of time displacement, 

1 
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or phase shift, between the transmitred signal and the returning reflected signal i s  directly proportional to range. 

Here the possible received messages are the phase shifts of the transmitted signal; and the ideal state of affairs i s  

for the various phase shifts to be as mutually distinguishable as possible. The problems of existence and construc- 

tion for such sequences are included in Section 11, while the applications to ranging are treated in Section 111. One 

of the most interesting features of the ranging systems under discussion i s  the possibility of establishing synchro- 

nization between transmitted and received signals in a very short span of time, even over interplanetary ranges. 

For telemetry applications, the only requirement i s  that the code words be as mutually distinct as possible. 

They need not be phase shifts of one another. In Section IV of this  report, orthogonal and biorthogonal telemetry 

codes will be evaluated from the standpoint of information theory. In the limit, as the number of code words in- 

creases, the theoretical bound on the information rate of a noisy channel is actually attained for suitable input 

signal-to-noise conditions. 

2 
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II. CODES WITH SPECIAL CORRELATION 

In this section the discussion is restricted to uniform binary codes. Thus, all the code words will contain 

the same number of symbols, and these symbols wil l  be chosen from a two-letter alphabet. Furthennore, the alphabet 

will usually be 1, -1. For these purposes, then, a code is a collection of n vectors from a w-dimensional vector 

space. The vectors are referred to as code words having w symbols per word; w is the word length of the code. 

The correlation C ( x ,  y )  of two w-dimensional vectors x,  y is given by 

W 
1 

x i  yi c ( x ,  y )  = - 
W 

If x ,  y are vectors of ones and minus ones,  then C ( x ,  y )  is the cosine of the angle between them. Two vectors x ,  y 

are said to be orthogonal if C ( x ,  y )  = 0.  

The autocorrelation function C , ( j )  of a w-dimensional vector x is given by 

W 

1 c,(j) = - 1 xi xi+i 
W 

where xw +k = Xk by definition 

For example, if x = (1, -1, -1, 1) then 

and 

C,(O) = 1, c,(1) = 0, c,(2) = -1 

In communications applications i t  is often desirable to use binary vectors which do not consist of ones and 

minus ones.  Usually it is desirable to preserve the correlation properties present in the 1, -1 representation. This  

can be done by defining correlation more generally. Thus if 

3 
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A - D  c ( x ,  y) = ~ 

A + D  

where A i s  the number of agreements of x with y and D i s  the number of disagreements, a “generalized correlation” 

h a s  been defined, which includes the one previously discussed. 

A. Simplex Codes 

A code is called maximally transorthogonal if i t  consis ts  of n optimally distinguishable code words; that is, 

if the correlation between distinct code words is minimized. Th i s  minimum i s  always negative, hence the word 

transorthogonal. I t  i s  important to note that this definition does  not fix or limit the word length in any way. A bound 

on the transorthogonality of binary codes is given by the following theorem. Letting vi ,  i = 1, 2, --. , n, be the code 

words, and 1, - 1  be the symbols, then: 

Theorem. 

c-’ if n i s  even 

minimum 
all c o d e s  i f j  

maximum C ( v i ,  v .) 2 I 
if n is odd 

Proof. Consider the n x w matrix 111 whose ith row i s  ui. Then l / w  ( M M T )  is the symmetric matrix of 

I 
- 

correlation coefficients. The average correlation c of u i ,  v .  (i 1 j )  i s  given by 

2 
but I v i  1 = w for all i, and letting V = f v i ,  one sees that V is the sum of the row vectors of M. Thus 1 V I i s  the 

2 sum of the squares of the column sums. Hence, in order to minimize c ,  one must minimize I V (  . For even n, all the 

column sums can be made equaI to zero; but for odd n: one can do no better than 1 or -1 .  Thus 

i = l  - 
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-1 c 1  (-nw) = - if n i s  even 
- 1 n(n  - 1 ) w  n - 1  I minimum c = minimum ( /v12  - nu) 2 

all codes all codes n(n  - 1) w 1 1 

n(n  - 1)w n 
(w - nw) = - - if n i s  odd 

But 

- 
minimum maximum C(vi, u . )  2 minimum 
all codes i f j  all codes i f j  

average C ( u i ,  u . )  = minimum c 
all codes 

I 

which completes the proof. 

In the course of this proof i t  has  also been shown that: 

Cor0 llary . 

(5 if n i s  even 

minimum average C ( u i ,  vi) 2 I n - l  - ,  all codes i f j  1 if n i s  odd 

A code achieving this bound on its maximum correlation u i ,  u j ( i  f j )  i s  called a simplex code. Simplex 

codes exist for an infinite number of values of n. In particular, all n 5 100 have associated simplex codes, except 

possibly n = 45, 46, 57, 58, 77, 78, 91, 92, 93, 94. The existence or nonexistence of simplex codes in general is tied 

up with the mathematical theory of Hadamard matrices. Since an introduction to this subject i s  provided in a later 

section, a pair of examples of simplex codes will suffice for the present. 

For n = 7 there i s  the code 

-1  1 1 -1 1 -1 -1 
1 1 -1 1 -1 -1 -1  
1 -1 1 -1 -1 -1 1 

-1  1 -1 -1 -1 1 1 

1 -1  -1 -1 1 1 -1 

-1 -1  -1 1 1 -1 1 

-1 -1  1 1 -1 1 - 1  

S 
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while n = 14 gives 

1 - 1  -1 -1 -1 1 1 1 1 - 1  1 1 1 - 1  1 1 - 1  -1 -1 1 - 1  1 - 1  -1 1 - 1  
-1 1 - 1  -1 -1 1 1 1 1 1 - 1  -1 1 1 - 1  1 1 1 - 1  -1 -1 -1 1 - 1  -1 1 

-1 -1 1 1 1 - 1  1 - 1  1 1 - 1  1 1 - 1  1 - 1  1 - 1  1 - 1  -1 1 - 1  -1 -1 1 

-1 -1 1 1 1 - 1  -1 1 - 1  1 1 - 1  1 1 1 1 - 1  -1 -1 1 - 1  -1 1 1 - 1  -1 

-1 -1 1 1 1 1 - 1  -1 1 - 1  1 1 - 1  1 - 1  1 1 1 - 1  -1 1 - 1  -1 -1 1 - 1  

-1 1 - 1  1 - 1  -1 1 - 1  -1 1 - 1  -1 -1 -1 1 1 1 1 - 1  1 1 1 - 1  1 1 - 1  

1 - 1  1 - 1  -1 1 - 1  -1 1 - 1  -1 -1 -1 -1 1 1 1 - 1  1 1 1 - 1  1 1 - 1  1 

1 - 1  -1 -1 1 - 1  1 - 1  1 1 1 - 1  1 - 1  -1 -1 -1 1 1 - 1  1 - 1  1 1 1 - 1  

-1 1 1 - 1  -1 -1 -1 1 1 1 1 - 1  -1 1 - 1  -1 -1 -1 1 1 1 1 - 1  -1 1 1 

1 - 1  -1 1 -1  -1 -1 1 - 1  -1 -1 1 1 1 - 1  1 - 1  1 1 - 1  1 1 - 1  1 - 1  1 
-1 1 - 1  -1 1 1 - 1  -1 -1 -1 -1 1 1 1 - 1  -1 1 - 1  1 1 - 1  1 1 1 1 - 1  

1 1  1 - 1  1 1 - 1  1 - 1  1 - 1  1 - 1 - 1  1 - 1  1 1 - 1 - 1 - 1 - 1 - 1  1 1  1 

1 1 1 1 -1  -1 1 1 - 1  -1 1 1 - 1  -1 -1 -1 1 1 1 1 - 1  -1 1 - 1  -1 -1 

1 1 - 1  1 1 1 1 - 1  -1 -1 1 - 1  -1 1 1 - 1  -1 -1 -1 -1 1 1 1 - 1  -1 1 

Note that in the first example the word length satisfies w = n, whereas in the second example w = 2(n - 1). 

I t  can be demonstrated fairly easily that these values of w are minimal. Specifically, i t  can be shown that if n & 1, 2 

and if n = 4 t  + 1 or n = 4 t + 2, then the word length i s  a multiple of 2 ( 4 t  + 1). If n = 4 t  or 4 t  - 1, however, then the 

word length is a multiple of 4 t  - 1. Thus both examples illustrate minimum word length. 

B. Orthogonal and Biorthogonal Codes 

For most applications of binary codes, the distinction between correlations of - l / ( n  - 1) and 0 is small  

enough to be disregarded without serious loss. Thus, instead of demanding optimum distinguishability ( a  simplex 

code), one may ask that C ( u i ,  u . )  = 0 ( i  4 j ) .  A code satisfying this requirement i s  called orthogonul. For ortho- 

gonal codes, i t  is usually assumed the n = w, and for this i t  i s  necessary that n = 1,2, or 4 t ,  a s  will be shown in 
I 

Section 11-D. 

A biorthogonal code consists of the vectors of an orthogonal code and their negatives. Thus n = 2 w ,  in 

general, and w i s  limited to 1, 2, or 4 t  as mentioned above. The correlation properties of biorthogonal codes are 

C ( v i ,  f u i )  = O ( i  f j ) ,  C ( u i ,  - v i )  = -1. Perhaps the best known biorthogonal codes are the first-order Reed-Muller 

codes, for which n = 2k (Ref. 1). An example in 0,l notation i s  

6 

~~ ~~ ~ ~~ ~ 
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0 0 0 0 0 0 0 0  
0 1 0 1 0 1 0 1  

0 0  1 1 0 0  1 1  
0 1 1 0 0  1 1 0  

0 0 0 0 1 1 1 1  

0 1 0 1 1 0 1 0  

0 0 1 1 1 1 0 0  

0 1 1 0 1 0 0 1  

1 1 1 1 1 1 1 1  
1 0 1 0 1 0 1 0  

1 1 0 0 1 1 0 0  

1 0 0 1 1 0 0 1  

1 1 1 1 0 0 0 0  

1 0 1 0 0 1 0 1  

1 1 0 0 0 0 1 1  

1 0 0 1 0 1 1 0  

Another example of a biorthogonal code is the one containing the 24 code words: 

0 0 0 0 0 0 0 0 0 0 0 0  

0 1 1 0  1 1 1 0 0 0  1 0  

0 1 0  1 1 1 0 0 0  1 0 1  

0 0  1 1  1 0 0 0  1 0  1 1  
0 1 1 1 0 0 0 1 0 1 1 0  

0 1 1 0 0 0  1 0  1 1 0 1  

0 1 0 0 0  1 0 1  1 0  1 1  
0 0 0 0 1 0 1 1 0 1 1 1  

0 0 0 1 0 1 1 0 1 1  1 0  

0 0  1 0  1 1 0 1 1 1 0 0  

0 1 0 1 1 0  1 1 1 0 0 0  

0 0  1 1 0  1 1 1 0 0 0  1 

1 1 1 1 1 1 1 1 1 1 1 1  
1 0 0 1 0 0 0 1 1 1 0 1  

1 0  1 0 0 0 1 1 1 0  1 0  

1 1 0 0 0 1 1 1 0 1 0 0  

1 0 0 0 1 1 1 0 1 0 0 1  

1 0 0  1 1 1 0 1 0 0  1 0  

1 0  1 1 1 0 1 0 0 1 0 0  

1 1 1 1 0 1 0 0 1 0 0 0  

1 1 1 0 1 0 0 1 0 0 0 1  

1 1 0 1 0 0 1 0 0 0 1 1  

1 0  1 0 0 1 0 0 0 1 1 1  

1 1 0 0 1 0 0 0 1 1 1 0  

C. Sequences with Two-Level Autocorrelation 

If the correlation function of a w-dimensional vector x i s  such that 

W 

1 
C,(O) = - 2 %i" = 1 

W 
i = l  

W 

7 
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then x (considered as a sequence) i s  said to have a flat or two-level autocorrelation function, or, briefly, to be a 

two-level sequence. If, moreover, C , ( j )  = - l / w ,  the sequence is sometimes called a pseudonoise (PN) sequence, 

(Ref. 21, or, rather loosely, an orthogonal sequence. 

An example of a two-level sequence i s  1 1 1 -1, where the out-of-phase correlation i s  0. Thus th i s  

sequence and i t s  cyclic shifts  can be taken as the code words of an orthogonal code. Another two-level sequence 

i s  - 1  1 1 - 1  1 -1 -1, the out-of-phase correlation here being -1/7. Thus one h a s  a sequence whose shifts 

form a simplex code, indeed the first simplex code mentioned above. 

An introduction to the theory and construction of two-level sequences i s  given in a later section (11-D) 

concerned with difference sets. Perhaps the best known and most exhaustively investigated sequences of this type 

are the m-sequences (also called maximal length linear recurring sequences or maximal length linear shift register 

sequences (Ref. 2,3). These sequences are of length w = 2k - 1, with C , ( j )  = -1/2k - 1, 1 5  j < 2k - 1. 

There are four known types of two-level sequences giving rise to simplex codes: 

(1) w = 2 k - 1  

(2) w = 4 t  - 1 i s  prime 

(3) w = 4 t  - 1 = 4 x 2  + 27 i s  prime, x > 0 

( 4 )  w = p ( p  + 2) where both p :  p + 2 are prime 

( m - s  e qu en c e s)  

(“quadratic residue” or “Legendre” sequences, Ref. 4 , s )  

(Hall sequences, Ref. 6) 

(twin prime sequences, Ref. 7) 

These four types of sequences overlap to some extent. Restricting attention to the sequence length w : 

(1) and (2) overlap if w is a Mersenne prime. 

(1) and (3) overlap if io = 31, 127, 131071 (Ref. 8). 

(1) and (4) overlap if tu = 15. 

(3) i s  a subset of (2). 

The known hlersenne primes are IO = 2k - 1 with h- = 2, 3, 5, 7 ,  13, 17, 19, 31, 61, 89, 107, 121, 521, 607, 1279, 

2203. 2281. Thus the first few lengths are io = 3, 7, 31, 121, 8191, 131071. In most cases  these overlaps result ..L 

distinct sequences. Specifically, ( 2 )  and (3) always lead to distinct sequences. While there i s  some overlapping 

for smaller value of w, w = 31 i s  the first value of w leading to truly distinct sequences. 

8 
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r - 
1 1  1 1  1 1 1 1  
1 - 1  1 - 1  1 - 1  1 - 1  

1 1 -1 -1 1 1 - 1  -1 
1 - 1  -1 1 1 - 1  -1 1 

1 1 1 1 -1 -1 -1 -1 
1 - 1  1 - 1  -1 1 - 1  1 
1 1 -1 -1 -1 -1 1 1 

-1 -1 -1 1 -1 1 1 -1_ 

D. Hadamard Matrices 

- 
1 

1 
1 
1 
1 
1 
1 
1 

- 

- 

An Hadamard matrix (Ref. 4, 7, 9,  10) is a square matrix whose elements are o n e s  and minus ones and whose 

row vectors are mutually orthogonal (equivalently, whose column vectors are mutually orthogonal). For example, 

1 1  1 1  1 1  1 -  

-1 1 1 - 1  1 - 1  -1 
1 1 - 1  1 - 1  -1 -1 
1 - 1  1 - 1  -1 -1 1 

-1 1 - 1  -1 -1 1 1 
1 - 1  -1 -1 1 1 - 1  

-1 -1 -1 1 1 - 1  1 
-1  -1 1 1 - 1  1 - 1  - 

(The partitioning exhibits structural properties which will be discussed later.) 

The determinant of an Hadamard matrix achieves the upper bound specified by Hadamard’s “determinantal 

inequality” (Ref. 111, i.e., 

I t  is clear from the definition of these matrices that one may 

(1) interchange rows 

(2) interchange columns 

(3) change the sign of every element in a row 

(4) change the sign of every element in a column 

without disturbing the Hadamard property. Using these operations i t  i s  possible to establish a normal form for 

9 
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Hadamard matrices by insisting that the first column contain only ones .  All examples given above are in normal 

fonn. If two Hadamard matrices can be transformed into each other by operations of the type listed above, they are 

called equivalent. For example, (c) and (d) above are equivalent. This example demonstrates that the normal form 

i s  not unique within an equivalence class. 

The existence of Hadamard matrices of all possible dimensions i s  an unsolved problem in mathematics. A 

result of interest is: 

Theorem. If rn 2 1 i s  the dimension of a Hadamard matrix, then m = 1, 2, or 4t.  

Proof. [l] is clearly a 1 x 1 Hadamard matrix, (a) above i s  2 x 2. If a Hadamard matrix has  a t  least  3 row 

vectors x ,  y, z ,  then 

but the summands on the left-hand side are all multiples of 4. Thus m = 4t .  

Whereas explicit methods of construction have been given for an infinite number of m‘s (=4t),  there are still  

an infinite number of unsolved cases. I t  has  been conjectured that Hadamard matrices exist for all m = 4t, but this 

has neither been proved nor disproved. There is more encouragement, however, from an applications point of view. 

Explicit constructions have been given for all Hadamard matrices of order 5 200 with but 5 exceptions (Ref. 4, 10). 

These are m = 92, 116, 156, 184, 188. In this regard, perhaps the simplest and most powerful result is the following: 

Theorem. If H, and H ,  are Hadamard matrices, then so is H 1  x H , ,  where H l  x H ,  is formed by substituting 

H ,  for 1 and - H ,  for -1 in H l  (the “Kronecker product”). 

The proof is by straightforward verification and will not be included here. By way of example, however, (b) 

above is partitioned to show that i t  is (a) x (a), and (c) above is partitioned to show that i t  i s  (a) x (b) = (a) x 

[(a) x (a)] .  

The connection between orthogonal (and thus biorthogonal) codes and Hadamard matrices should be clear 

a t  this point. The following theorem demonstrates the connection between Hadamard matrices and simplex codes. 

Theorem. If a Hadamard matrix exists for m = 4t, then simplex codes exist for m = 4t ,  4 t  - 1, 2t,  and 

2 t  - 1. 

10 
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Proof. If the first column of a n  Hadamard matrix in normal form is deleted, the row vectors form a simplex 

code for m = 4 t .  Deleting any vector of this collection leads to a solution for m = 42 - 1. Since the columns of an 

Hadamard matrix are mutually orthogonal, any column other than the first of an Hadamard matrix in normal form 

contains 2 t  ones and 2 t  minus ones.  Thus, taking an Hadamard matrix in normal form and selecting a noninitial 

column j ,  the row vectors whose entries in column j are one (or, alternatively, minus o n e )  may be deleted. If the 

first and jth columns are also deleted, the partial row vectors remaining form a s e t  of 2 t  vectors of length 4 t  - 2 

whose correlation with each other is -2/(4t - 2) = -1/(2t - 1): that is, a simplex code for m = 2 t .  As before, one 

of these vectors may be deleted to give a solution for m = 2 t  - 1. 

Another problem intimately connected with Hadamard matrices is that of symmetric balanced incomplete 

block designs (the so-called v, k, h problem). I t  is discussed in the following section. 

E. Hadamard Designs 

A balanced incomplete block design (Ref. 12) is an arrangement of v objects into b s e t s  in such a manner 

that: 

(1) each set contains exactly k different objects. 

(2) each object occurs in exactly r different sets. 

(3) any pair of objects occurs in exactly h different sets. 

These parameters satisfy the following two relations: 

The second of these relations remains nontrivial even in the case of a symmetric design (where b = v, and, conse- 

quently, k = r ) .  Thus (2) becomes 

h ( v - 1 )  = k ( k - l )  

If a v x u matrix D is formed of zeros and ones, letting the columns represent the u objects and the rows the 

b = u sets, and if  one puts d . .  = 1 when the j t h  object occurs in the ith set but dii = 0 otherwise, then D is called an 

incidence matrix of the block design. 
' I  

11 
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- 
0 1 1 0  1 0 0  

1 1 0 1 0 0 0  

1 0 1 0 0 0 1  

0 1 0 0 0  1 1  

1 0 0 0 1 1 0  

0 0 0 1 1 0 1  

For example, let v = 7, k = 3, X = 1. Then 

1 2 3 4 5 6 7  1 2 3 4 5 6 7  

o o 1 1  o 1 OJ 

S l  
s2 

s3 

s5 

s7 

and S, 

' 6  

0 1 0  1 0  1 0  

1 0 0 1 1 0 0  

0 0 1 1 0 0 1  

1 1 1 0 0 0 0  

0 1 0 0 1 0 1  

1 0 0 0 0 1 1  

0 0 1 0 1 1 0  

are incidence matrices of two solutions to the design problem. 

The careful reader may have noticed that, apart from superficial differences, these matrices correspond to 

the Hadamard matrices (d) and (c) respectively. Herein lies the connection between symmetric balanced incomplete 

block designs and Hadamard rtiatrices. More specifically, there is the following theorem: 

Theorem. An Hadamard matrix for m = 4 t  exis ts  if and only if there exis ts  a symmetric balanced incomplete 

block design with parameters v = 4 t  - 1, k = 2 t  - 1, A = t - 1 (usually called an Hadamard design). 

Proof. Given an Hadamard matrix in normal form, delete the first row and column. Since the row (column) 

vectors of a Hadamard matrix are orthogonal, there must be 2t - 1 = k ones in each remaining row (column). Next, 

correlate two column vectors of this  reduced matrix. Letting 1 . 1 occur a times, i t  is seen that 1 

occur (2t  - 1 - a) times each, and that (-1) -(-l) occurs a + 1 times. Thus 

(-1) and (-1) - 1 

( 4 t  - 1) C ( x , y )  = 2 a  + 1 - 2(2t - 1 - a)  = 4 a  - 4 t  + 3 - ] 

so that 

a = t - l = h  

Thus ,  identifying -1 with 0 and 1 with 1, it has  been shown that the reduced Hadamard matrix i s  the incidence 

matrix of a Hadamard design. Conversely, given an Hadamard design, an incidence matrix may be formed using - 1 

in place of 0. Now, correlating column vectors x ,  y2 there i s  the product 1 

(-1) - 1 occurring k - h = t times each, and (-1). (-1) occurring v - k - ( k  - X) = t times, so that 

1 occurring h = t - 1 times, 1 (- 1) and 

(4t - 1) C ( x , y )  = 2t - 1 - 2t  = -1 

12 
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Thus the addition of a row and column of ones to the matrix would create mutual orthogonality of t h e  column vectors, 

i.e., an Hadamard matrix. 

By definition, the incidence matrix exhibited by an Hadamard matrix in normal form i s  the core of the 

Hadamard matrix. In Hadamard matrix (d) above, the core i s  partitioned off from the rest  of the matrix. This matrix 

exhibits another phenomenon not previously mentioned, namely, the fact that the row vectors of its core consist of 

all cyclic shifts of the first vector. An Hadamard design having such an incidence matrix is called cyc l ic .  Cyclic 

designs are discussed further in the following section. 

F. Difference Sets 

A difference s e t  D = {d l ,  d2, ..- , d k )  i s  a subset of the integers modulo u for which 

di - di (modulo u) ( i  4 j )  

assumes each value 1, 2, -.- , u- - 1 exactly A t i m e s  (Ref. 6, 13-15). 

For example, if u = 7, k = 3, A = 1, then D = { 1, 2,4) is a difference set with these parameters. Specifically, 

d - d  - 1 - 2 = - 1 ~ 6  

dl  - d 3  = 1 - 4  = -3 E 4 

d - d3 = 2 - 4  = -2  E 5 

1 2 -  

2 

d2 - d ,  = 2 - 1  = 1 

d ,  - d ,  = 4 - 1  = 3 

d3 - d2 = 4 - 2  = 2 

(all congruences modulo 7) 

AS might be suspected from the occurrence of the parameters u, k, A, there is a direct connection between 

difference s e t s  and block designs. In particular, there is the following correspondence. 

Theorem. A difference set exists for particular values of the parameters u, k, A if and only if a cyclic 

symmetric balanced incomplete block design exists for the same values of u, k, A. 

Proof. Suppose a difference set D = {al, d,, , d k )  exists with parameters v ,  k. A. Considering 0, 1, 

2, , u - 1 as the objects, let 

13 
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be the se t s  of the design, where the subscripts on the J s  are computed modulo v. Clearly, the resulting v-sets have 

the following properties: 

(1) Each set  contains exactly k different objects. 

(2) Each object occurs in exactly k different sets. 

(3) b = v,  k = r (symmetric). 

(4) The sets are all of the cyclic shifts of D modulo u (cyclic). 

Further, using (4), and since di  - d .  s m (modulo v )  has exactly h solutions in D, any pair d i ,  di occurs in exactly 

h of the sets.  Thus the s e t s  Si f o n  a cyclic symmetric balanced incomplete block design. 
I 

Given a cyclic symmetric balanced incomplete block design consisting of s e t s  S i ,  let  D be the set formed 

from S, by putting i (modulo u) in D, if the ith object occurs in S,. If there are any solutions to i - i E m (mod v )  

in D for a particular value of m 4 0, there are exactly h of them, since each pair of objects (in particular the i . th 

and the i th) occurs exactly h times in the cyclic design. But there are k (k - 1) ordered pairs i . ,  i (i. f i ) in D, 

and thus there must be k(k - 1)/h values of m (modulo v ) .  But k(k - 1) = A ( v  - 1) in all symmetric designs ( see  

Section 11-E), so  all non-zero residues modulo u are represented exactly A t imes  in th i s  form. That is, D i s  a 

difference set. 

i q  

I 

4 1 9 1  4 

Given a difference set  D, consider the vector v whose ith component is 1 if di is in D and -1 otherwise. 

Correlating u with its cyclic shifts yields 1 - 1 exactly h t imes ,  1 - (-1) and (-1) - 1, k - A times each, (-1) (-1) 

occurs u - 2(k - A) - h t imes ,  and one obtains 

That is, v is a sequence with two-level autocorrelation. Conversely, given a sequence of ones and minus ones with 

two-level autocorrelation, there i s  an associated difference set. Thus, methods of constructing difference s e t s  can 

be applied to the construction of two-level sequences. 

A s  a step in this direction, i t  is helpful to introduce the following definition. If t is an integer such that in 

, t d ,  are d ,  + s, d, + s, ... , d, + s (mod v ) ,  then t is called a multiplier of the difference set some order t d l , t d 2 ,  

D = {dl, d2 ,  -.. , d k ) .  In the terminology of modern algebra, a multiplier is an automorphism of the associated 

cyclic block design; and the multipliers form a group called the multiplier group of the design. 

14 
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Theorem. Let n l  divide n ( = k  - A), (nl, u) = 1 and ?> A .  If for every prime p dividing nl there i s  a j such 

that 

p i  I t (mod u) 

then t is a multiplier of a difference set modulo u. The proof will not be given here (Ref. 6). Instead, the usehlness  

of this theorem will be illustrated by constructing the difference set u = 23, k = 11, A = 5. Let n l  = 6; then 

t 25 P 32 E 9 (mod 23) is a multiplier. Suppose a difference set D exists. Then 

9 D = D + s  

9 { D + i ) E D + s s 9 i  

Thus if 

i 3 s + 9 i  

there exists a shift i such that 

9 { D + i )  E D + i 

But this means solving 

8 i  E --s 

which can be done since 

(8,231 = 1 

(all mod 23) 

Thus one may break the residues mod 23 up into sets which satisfy 9 { D  + i )  3 D + i (mod 23). Doing BO yields 3 

se t s  

{ 1,9,12,16,6,8,3,4, 13,2, 18) E {distinct powers of 9 mod 23) 

~5,7,10,11,14,15,17,19,20,21,22~ 

(0 > 

each set  belonging to D + i completely or not at all. Now, i t  is necessary to find k = 11 residues which form a 

difference set. Clearly, one may choose only the first or second se t s  for this. For this example, either will do 

(although this is not generally the case). Thus 

1,2,3,4,6,8,9,  12, 13,16, 18) 

is a difference set  for u = 23, k = 11, A = 5. 

15 
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The method here demonstrated can be used to construct difference se t s  when they exist, and also to prove 

nonexistence. It has  been conjectured that any prime p satisfying (p, v )  = 1 and dividing n = k - X i s  a multiplier. 

This  is true for all known difference se t s  but has  not been shown to be true in general. 

G. Other Constraints on Codes 

Suppose a Hadamard matrix exists for no = 4to ,  and suppose further that i t  is required to form a simplex, 

orthogonal or biorthogonal code for no. There are a considerable number of Hadamard matrices to choose from in 

general. That is, whereas large numbers of these matrices are considered equivalent from a mathematical point of 

view, this i s  not necessarily the case from a coding point of view. Specifically, if there is some property which is 

considered desirable for a code to possess, and if that property is not invariant under permutations and comple- 

men tations 

of rows and columns, one should expect that some equivalent Hadamard matrices possess  this property to a larger 

degree than others. Naturally, one would like to generate the code from a matrix possessing this property to the 

largest degree. 

There are many such properties which could arise, but this section will be limited to a discussion of only 

two of them in order to indicate the considerations involved. These typical side-conditions are: 

(1) Ease  of code generation. 

(2) Self-synchronization (the use  of "comma-free" codes). 

Of all the Hadamard designs considered above, perhaps the simplest to generate are those which are cyclic. 

In this case, one need only generate or store one code word, and then use its shifts for the other words. Within this 

c lass  of two-level sequences, the easiest  to generate are the maximal-length linear shift register sequences. These 

have length 2" - 1 and can be generated very easily with an n-stage shift register (Ref. 2, 3, 16, 17). Thus a ranking 

in order of ease-of-generation might be 

(1) Cyclic designs with word length 2" - 1. 
(2) Cyclic designs of other lengths. 

(3) Hadamard designs which are noncyclic. 

16 
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With regard to self-synchronism, one can require that a code be “comma-free” (Ref. 18). A code C with 

uniform word length w i s  said to be comma-free if a l ,  u 2 ,  . e -  , a, and b l ,  b , ,  ... , b ,  in C imply a 2 ,  

a3, . .e  , b , ,  b 2 ;  ... ; aw, b , ,  

with a comma-free code i t  takes no more than 2 w  - 2 symbols to establish word synchronization, in the absence of 

noise. Note, moreover, that these 2 w  - 2 symbols need not be the first 2 w  - 2 transmitted. Thus the receiver would 

not have to get the first part of a message to establish word synchronism in the part i t  did pick up. Such a code is 

said to be uniquely decipherable in the small. 

, a, ,  b , ;  

, bw-l are not in C (i.e., no overlaps of code words are code words). It i s  clear that 

Comma-free orthogonal and biorthogonal codes have been found. One example of a comma-free orthogonal 

code is the following: 

1 1 1 1 1 0 1 1  
1 1 1 1 0  1 0 0  
0 1 1 0 1 1 1 0  
0 1 1 0 0 0 0 1  
0 1 0 1 0 0 1 0  
0 1 0 1 1 1 0 1  
1 1 0 0 0 1 1 1  
1 1 0 0 1 0 0 0  

17 
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111. A PSEUDORANDOM CODED RANGING SYSTEM 

The purpose of th is  section i s  to describe a pseudorandom coded ranging system and to explain some of the 

coding techniques which have been worked out to implement such a system. 

The classical radar technique for ranging is to transmit a pulse and measure the time until the return of the 

reflected pulse. The elapsed time multiplied by the propagation velocity in  the medium i s  twice the range. A s  the 

range increases, i t  becomes increasingly difficult to detect the reflected pulse even if a transponder is used to 

enhance the echo. One may resort to transmitting many pulses or even a square wave or sine wave and apply corre- 

lation detection methods to detect the returned signal. However, this leads to a n  ambiguity in  the range measurement 

if the repetition period of the pulses or the period of the square wave or sine wave i s  l e s s  than the time required for 

the signal to travel to the target and back. To resolve this ambiguity an additional periodicity must be imposed on 

the transmitted signal which i s  longer than the time required for the echo to return. Furthermore, this additional 

periodicity must be such that the phase of the returned signal can be resolved to within one pulse repetition period 

or one period of the square wave or sine wave. 

P N  sequences, described in the previous section, have just  this property. If the sequence of the pulses and 

no pulses i s  transmitted where the pulses represent the zeros, then the returned signal can be correlated with a 

locally generated model to determine the exact phase of the returned signal. Since these sequences can be generated 

with periods in the billions and trillions, there i s  no problem in resolving the range ambiguity. 

There i s  still  one final problem before one starts to design a system. To achieve fine range resolution, one 

desires a high pulse repetition rate. For long ranges this implies a long sequence. Long ranges also imply a low 

returned signal level and therefore a long integration t ime  to detect the signal. One can determine the phase of a PN 

sequence by correlation only by trial and error; that is ,  one chooses a phase and tries a correlation. If the phase 

chosen is not correct, there i s  no better choice than to try the next phase. If the sequence were a million digits 

long, all of the million possible phases might have to be tried in order to find the right one. However, from an 

information theory standpoint only log2 lo6 yes-or-no questions should have to be asked instead of 10 questions. 

Sequences have been found in which the phase can be determined by correlation using fewer trials. These sequences 

are formed by combining several short PN sequences digit by digit. If the periods of the several sequences have no 

common divisors, the period of the combined sequence i s  the product of the periods of the several sequences. I t  is 

possible to determine the phase of the combined sequence by determining separately the phases of the component 
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sequences. This requires a t  most p1 + p2 + 

length is p1p2 -.. pn when the pi are the lengths of the component sequences. 

+ pn trial correlations to determine the phase of a sequence whose 

A. Correlation Properties of Codes 

The subsequent material in this section i s  concerned with properties of these sequences and with some 

techniques which have been developed for system design. 

1. Sequences and waveforms. If a signal i s  made up of equally spaced pulses, i t  i s  easy to impose the 

sequence properties on the signal by assigning a pulse to each digit and deleting those pulses which correspond to a 

zero. This  technique was used in the Venus radar experiment conducted by the Massachusetts Institute of Technology. 

However, for Correlation detection, particularly when a carrier is used, it is desirable to have a continuous carrier 

wave with phase modulation. Therefore, i t  i s  more suitable to use  a waveform for each digit instead of a pulse. The 

waveform that has  been used is a dc level for a specific period of time with a unit positive level for zeros and a unit 

negative level for ones. An example of a sequence and the corresponding waveform i s  shown in Fig. la. The product 

of two waveforms is shown in Fig. lb, and the digit-by-digit modulo 2 sum of the corresponding sequences is shown 

in Fig. IC. The table in Fig. Id  summarizes the relations between the waveform and the sequence. The waveform is 

referred to as a code. In this section, computations and algebraic representations will usually be in terms of 

sequences, but block diagrams and descriptions of mechanizations will be in terms of codes. 

2. Correlation functions of sequences and codes.  The correlation properties of PN sequences are the 

properties that are used in constructing acquirable codes. The (unnormalized) correlation between two sequences of 

the same length is defined as: 

C = number of agreements - number of disagreements 

The correlation between two sequences of different lengths p 1  and p q  may be obtained by repeating the second 

sequence p1 t i m e s  and the first sequence p2 times to obtain two sequences of length p I p 2 .  

The ( c ross - )  correlation function of two sequences of the same length is the correlation of the one sequence 

with all of the cyclic permutations of the other sequence. If the two sequences are of different lengths, they are 

repeated a s  described above. The autocorrelation function of a sequence is the correlation of the sequence with all 

cyclic permutations of itself. 
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a WAVE FORM 

C 

0 I 0 I 0 0 1 1 0 0 \  
@ - 0 I 1 0 0 0 0  I I O  

/ 0 0 1 1 0 0 1 0 1 0  

d 

SEQUENCE WAVE FORM 

0-1 

I - -I 
MOD 2 ADDITION - MULTIPLICATION 

Fig. 1. Waveforms and sequences 

I t  is often desirable to use the normalized correlation defined by 

number of agreements - number of disagreements c,  = 
number of agreements + number of disagreements 

As in Section 11, the normalized correlation function may also be used. 

\ 

To compute the correlation of two sequences, it is convenient to compute the modulo 2 sum of the two 

sequences digit by digit and, noting that agreements lead to zeros and disagreements lead to ones,  apply the 

following formula: 

C = number of zeros - number of ones 

20 
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An example of the computation of a correlation is given in Fig. 2a. An example of the computation of a correlation 

function is given in Fig. 2b. The new variable r is the number of digits by which the second sequence is cycled 

with respect to the first. If the two sequences are interchanged, the sign of r is changed. The autocorrelation 

function is computed in the same way as the correlation function. Since interchanging the two sequences in the auto- 

correlation function leaves the function unchanged, the autocorrelation function is an even function of r .  

FIRST SEQUENCE I I 1 0 0 1 0 1 1 1 0  

D SECOND SEQUENCE 0 1 0 1 1 1 0 0 0 1 0  

MOD 2 SUM 1 0 1 1 1 0 0 1 1 0 0  

b 

FIRST SEQUENCE 1 1 1 0 0 1 0 1 1 1 0  

SECOND SEQUENCE;r=I 0 0 1 0 1 1 1 0 0 0 1  

MOD 2 SUM 1 1 0 0 1 0 1 1 1 1 1  

CORRELATION FUNCTION 

Fig. 2. Correlation computation 
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These correlation concepts may be applied to codes. In contradistinction to sequences, codes are periodic 

functions of time that extend indefinitely far along the time axis. The correlation of two codes that have the same 

period T is defined as: 

T 
C = 4 F l ( t )  F2( t )  dt 

If the two codes have different periods T ,  and T2 the correlation is defined a s  

Similarly, the normalized correlations are defined a s  

and 

The correlation functions are defined a s  

and 

The normalized correlation functions are defined as 
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and 

'1'2 Jo 

Because of the periodicity of the codes, these correlation functions are equal to the correlation function usually 

defined for functions of time, namely: 

The correlation function of two codes with the same period is periodic with the same period as the code. If two codes 

have periods which are relatively prime (i.e., the periods have no common divisors other than 11, the correlation is 

periodic with a period equal to the product of the periods of the codes. The period of the correlation function of two 

codes whose periods have a common divisor is the leas t  common multiple of the periods of the codes. 

The sequences used in constructing acquirable codes are P N  sequences which have two level autocorrelation 

functions with the in-phase correlation p and the out-of-phase correlations -1. More formally: 

p, T = np, n = 0, kl, $2, 
T f np, n = 0, 51, k2, ..- C ( T )  = 

The correlation function for a code corresponding to a PN sequence is of the form shown in Fig. 3. These codes are 

called P N  codes. 

The correlation function of two PN sequences of relatively prime periods is everywhere small. Two such 

sequences are said to be uncorrelated. An example of the calculation of such a correlation function i s  given in 

Fig. 4. This calculation illustrates several important properties of this type of correlation function. First, the calcu- 

lation need be performed only p1  t imes  where p1 is the length of the shorter sequence; since, obviously, if the shorter 

sequence is shifted p1  times it returns to its original position. This  is illustrated in Fig. 4 by having only 3 compu- 

tations. Second, since the two sequences take on all possible phase relations with each other, the shifting of one 

code with respect to the other is equivalent to shifting the origin of both sequences by some amount. In Fig. 4 the 

relationship between the two sequences for T =  1 is the same as that for 7 =  0 except that the origin i s  shifted by 8. 

Similarly, the relationship between the two sequences for T =  2 is the same a s  that for T =  0 except that the origin is 
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0 

- I  

2 3 4 5 6 7 8  
O t I I  

P - 2 - 7  I \  
p-3 -  

p - 4 7  \ \ 

Fig. 3. Correlation function of PN code 

shifted by 16. Since the correlation function is a sum (or integral) over a period, i t  is independent of the origin of 

the sequences. Therefore, a s  shown in  Fig. 4, the correlation function of two PN sequences with relatively prime 

periods i s  a constant. The correlation function of two PN codes with relatively prime periods is also a constant. 

3. Statistical independence and probability. Before developing the theory of the correlation functions of 

combined codes i t  is desirable to develop some more computational aids. To do this requires definitions of statisti- 

cal independence and probability a s  applied to the digits in sequences. In a PN sequence of length p there are 

either p - 1 / 2  zeros and p + 1 / 2  ones or vice versa. In this section i t  will be assumed that there is one more one 

than zero. Therefore, if the sequence i s  sampled randomly, the probabilities of obtaining a zero or a one are: 

Furthermore, if an entire sequence is examined, the relative frequencies of zeros and ones are precisely 

those given by the above probabilities. Since two sequences with relatively prime periods take on all phases with 

respect to each other during their combined period, knowing the phase of one sequence does not give any information 
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FIRST SEQUENCE I I I 0 1 0  

SECOND SEQUENCE 1 1 0  

CALCULATION OF CORRELATION FOR T = 0 

FIRST SEQUENCE 1 1 1 0 1 0 0 1 1 1 0 1 0 0 1 1 1 0 1 0 0  

SECOND SEQUENCE I 1 0 1  I O 1  1 0 1  I O  I 1 0 1  1 0 1  I O  

MOD 2 SUM 0 0 1 1 0 0 1 0 1 0 1 1  1 1 1 0 0 0 0 1 0  

NUMBER OF ZEROS= I I 

NUMBER OF ONES= IO 

CALCULATION OF CORRELATION FOR T = I 

FIRST SEQUENCE 1 1 1 0 1 0 0 1 1 1 0 1 0 0 1 1 1 0 1 0 0  

SECOND SEQUENCE 0 1  1 0 1 1 0 1  1 0 1 1 0 1 1 0 1 1 0 1 1  

MOD 2 SUM I O 0 0 0  I O 0 0  I I O 0  I O  I O  I I I I 

NUMBER OF ZEROS = I I 

NUMBER OF ONES = I O  

CALCULATION OF CORRELATION FOR t = 2  

FIRST SEQUENCE 1 1 1 0 1 0 0 1 1 1 0 1 0 0 1 1 1 0 1 0 0  

SECOND SEQUENCE 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1  

MOD 2 SUM 0 1 0 1 1 1 1 1 0 0 0 0 1 0 0 0 1 1 0 0 1  

NUMBER OF ZEROS = I I 

NUMBER OF ONES = I O  

Fig. 4. Calculation of the correlation function of two PN sequences 

concerning the phase of the other sequence. More particularly, if two sequences are sampled randomly, the occur- 

rence of a particular digit in one sequence does not affect the probabilities of the digits in the other sequence. 

Therefore, the two sequences are said to be statistically independent. One of the properties of statistical inde- 

pendence between two processes is that joint probabilities are the products of individual probabilities. This property 

may be used in the computation of correlation functions. Such a computation is shown in Fig. 5 for the same 

sequences as were used in Fig. 4. Note that the probabilities which are average frequency functions lead directly to 

the values for the normalized correlation functions. A convenient way of calculating the joint probabilities, 
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r 

FIRST SEQUENCE I 1 1 0 1 0 0  
SECOND SEQUENCE I I O  

PROBABILITIES FOR FIRST SEQUENCE 

PROBABILITIES FOR SECOND SEQUENCE 

P ( O 0 )  = 3/7 x I / 3  =3/21 r 
P ( 0 I )  = 3 / 7  X2/3=6/21  

p (  I I )  = 4 / 7 X 2 / 3  =8/21 
JOINT PROBABlLl TIE S 

PROBABILITY OF AGREEMENT=P(OO) +P(I 1)  = 3/21 +8/21 =11/21 
PROBABILITY OF DISAGREEMENT = P (01) +P(IO) =6/21+4/21=10/21 
NORMALIZED CORRELATION=I 1/21 -lO/2l=l/2l 

O p i  I 

MOD 2 SUM PROBABILITIES 

Fig. 5. Calculation of the correlation function of two 
PN sequences by probabilities 

especially for more complicated situations, is to make use of a Kamaugh chart. The chart a t  the lef t  in  Fig. 5 is 

the Karnaugh chart for the mod 2 addition of two variables. The chart at the right corresponds to it,  but the entries 

are the individual and joint probabilities. The probabilities of agreement and disagreement are obtained by summing 

the probabilities for zeros and ones, respectively. 

4 .  Correlation functions of combinations of sequences.  Some combinations of sequences have correlation 

functions which make them acquirable. A combination is formed by a logical function of two or more sequences digit 

by digit. An example of such a combination i s  shown in Fig. 6, where the logical and is the function used. There 

are four cases  to be considered in computing the autocorrelation function of this  sequence: 
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(1) r = 0 

(2) r = n7, so that the first component i s  in phase 

(3) 7 = n15, so that the second component i s  in phase 

(4) r = some other value, so that neither component is in phase 

The value of the correlation function for each of these cases  can be computed using the Karnaugh chart 

and probabilities by first computing the mod 2 sum for the several cases.  In the following equations capital letters 

are used for the components of the first combination and lower case letters are used for the components of the 

second combination. When two components are in phase, they are both designated by capital letters. 

(1) XY @ X Y = O  

(2) XY @ xy = X Y I +  xuy 
(3) XY @ X Y  = X Y Z  + X Y X  

(4) XY @ xy = X Y Z  + X Y y  + L y  + 'L*y 

If an attempt is made to compute the correlation functions for this combination using Karnaugh charts and 

probabilities as before, it is found that things do not work out, because components of the same length are not 

statistically independent. If the components are out of phase, then there are four cases: 00, 01, 11, and 10. If p is 

the length of the component, then the following statements can be made: 

P - 1  (1) Number of 00 plus number of 11 = - 
2 

P + l  (2) Number of 01 minus number of 10 = - 
2 

P - 1  (3) Number of 00 plus number of 01 = - 
2 

P + l  (4) Number of 10 plus number of 11 = - 
2 

P + l  = - 
2 

(5) Number of 01 plus number of 11 

P - 1  = - (6) Number of 00 plus number of 10 
2 
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From these statements the following probabilities can be computed: 

P - 3  P(00) = - 
4P 

P + l  P(O1) = P(10) = P(11) = - 
4P 

These probabilities apply for all P N  sequences of length greater than 3. The sequence of length 3 is short enough 

to be degenerate, which i s  why it  is not used in the example in Fig. 6. 

There are two points that should be noted about the correlation function computed in Fig. 6. First, there are 

peaks for all values of r which are divisible by the period of either component. Second, the correlation when both 

components are out of phase is not -1/plp2. This  is a consequence of the fact that the combination sequence is 

very unbalanced with 73 zeros to 32 ones. 

The computation in Fig. 6 can be simplified by making an approximation; namely, that a PN sequence has  

equally many ones and zeros. This  leads to the approximation that for an out-of-phase component, the four situations, 

00, 01, 11, and 10, occur equally often. The computation for the same sequences as were used in Fig. 6 is repeated 

in simplified form in Fig. 7. The case where neither component i s  in phase i s  done first. Note that with the approxi- 

mation, all of the probabilities in the Kamaugh chart are equal; 80 that one might a s  well merely count the number 

of ones and zeros in the chart and use the formula: 

number of zeros - number of ones 

number of zeros + number of ones 
c, = 

The error in this computation is: 

4 105 420 

This  i s  a fairly large error, but it decreases rapidly with the length of the component sequences. Aside from the 

case of computation, the approximate method has mother advantage; i t  applies to codes of any length. 

The computation of the autocorrelation for one component in phase i s  given in Fig. 7 also. It is not 

necessary to perform the other compntation,since the two components enter into the combining expression 
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0 0 0 0  

0 1  I O  

0 1 0 1  

0 0 1  I 

00 

01 

xx 
I I  

IO 

1/4 1/6 

114 
x x  

1/4 

1/4 1/6 

COMBINATION SEQUENCE = X Y  

CALCULATION FOR NEITHER COMPONENT 
IN PHASE XY@xy = XYX + XYY + T x y + y x y  

CALCULATION FOR ONE COMPONENT IN PHASE, i.e., X = x  

00 01 I I  I O  1/4 1/4 1/4 1/4 

00 1 /2 

01 0 
XY x x  

I I  1/2 

I O  0 

NOT POSSIBLE 

P ( O ) =  68 

P(  I )  = 2/8 
e, = 1/2 

Fig. 7. Simplified calculation of the autocorrelation function 
of a combination sequence 

symmetrically. Also, the complete Karnaugh chart can be used by merely deleting those parts which are ruled out 

by two of the variables being the same. This  i s  equivalent to making the probabilities for those cases  zero a s  

shown in the chart on the right in  Fig. 7. The error in this computation is: 

1 41 

2 105 
emor = - - - - - 0.228 
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Again the error is large, but i t  decreases with increasing length of the sequences. Because of the simplicity and 

generality of the approximate computation, i t  will be used in the rest of this paper. Of course, in an actual applica- 

tion the precise correlations should be calculated. 

Not all combination sequences have autocorrelation functions with peaks a t  multiples of the periods of the 

component sequences. An example of such a combination is given in Fig. 8. In this combination both components 

must be in phase for the correlation to be other than very small. This combination then is equivalent to a single PN 
sequence as far as its correlation properties are concerned. The sequence shown in Fig. 7 is said to be acquirable, 

while that in Fig. 8 is not. 

00 

01 

XX I I  

10 

COMBINATION SEQUENCE = X € B  Y 

CALCULATION FOR NEITHER COMPONENT 
IN PHASE X @ V @ x @ f  

Y Y  

IF X = X ,  THE SECOND AND FOURTH ROWS ARE 
DELETED AND C n = ( 4 - 4 ) / 8 = 0  

IF Y=y,  THE SECOND AND FOURTH COLUMNS 
ARE DELETED AND Cn=(4-4) /8=0 

Fig. 8. Autocorrelation function of a cornbination which 
has no extra peaks 

Another correlation function of interest is that of a combination sequence v s  one or more of its components. 

An example of this type of correlation is given in Fig. 9. 
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FIRST CODE - x -  
2 

COMBINATION SEQUENCE= XY 
X Y @ x =  X Y F i Z X + Y X  

- x -  BAND PAS S 
FILTER 

FIRST CODE X CARRIER D X -  
+ NOISE 

x x  

00 01 

om1 

I O  

- 

e,= 0 

IF X = x , T H E  SECOND AND FOURTH ROWS ARE DELETED AND C,= 

( 3- I) /4= 1/2 

Fig. 9 .  Calculation of the correlation function of a 
combination with one of its components 

B. Correlation and Tracking Schemes 

1 .  Correlators and detectors. When the problem of mechanizing a device to determine the correlation of two 

codes is considered, perhaps the most obvious solution is that shown in Fig. loa. Such a device works perfectly 

well if the two inputs are simply the two codes. In fact, because of the binary nature of the codes, the multiplier 

a 
~ 

METER 

SECOND CODE 

SIMPLE CORRELATOR 

b SECOND CODEL 

REFERENCE CARRIER 

Fig. 10. Correlation detector for a noisy signal 
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can be a switching device or even a digital device. However, in practical cases  in a ranging system, the one code is 

badly contaminated with noise. The total noise power at the input to the multiplier may be as much as 50 db above 

the signal power. It is extremely difficult to build wideband multipliers with dc outputs to work under these condi- 

tions. If the code is available as modulation on a carrier, the multiplier is much easier to build. Figure 10b shows a 

possible form for a correlator where the code i s  available as biphase modnlation on a carrier. The bandpass filter 

eliminates much of the noise to the one input of the second multiplier, both of whose inputs are narrow band and may 

be tuned. The phases of the carriers are arranged so that when two digits of the codes are the same, the carrier out 

of the first multiplier (actually at the output of the bandpass filter) i s  in phase with the reference to the second multi- 

plier. When two corresponding digits are not the same, the carrier out of the bandpass filter i s  reversed. Thus, if the 

two codes are correlated, the input to the second multiplier is always in phase with the reference. If the codes are 

uncorrelated, the signal to the second correlator i s  in phase with the reference half the time and out of phase half the 

time, so tha t  the integrated output of the multiplier is zero. For partial correlation, the output of the integrator i s  

proportional to the correlation. 

2. Direct tracking. Another problem of interest in ranging is tracking a code once it has been acquired. For 

purposes of discussion, assume that a single component, i.e., a PN sequence, has been transmitted to an object and 

returned, and that, by measuring the correlation between the retnrned signal and a local model, the local model has  

been brought into phase with the returned signal. Now the phase difference between the transmitted signal and the 

local signal i s  a measure of the range. However, if the range changes, the local model i s  no longer in step with the 

returned signal. In order to make a continuous range measurement it i s  desirable to have a tracking device, which 

would automatically keep the local model in step with the returned signal. 

A correlation detector such as that shown in Fig. 10b i s  suitable for acquiring the retnrned signal (i-e., 

matching a local model to it), but i t  does not lend itself to automatic tracking because, as i t  stands, it does not 

generate an error signal when the two codes tend to go out of phase. A scheme for generating an error signal i s  shown 

in Fig. 11. Once code B i s  in phase with code A, any tendency for i t  to move out of phase will generate an error 

signal which i s  negative if code B gets ahead and positive if code B gets behind. This  error signal can be used to 

control the rate at which code B i s  switched and thereby keep code B in phase with code A. This scheme h a s  the 

same difficulty that the correlator in Fig. 10a has  in the presence of noise; wiz., the multipliers are difficult to build. 

3. Tracking with a carrier or clock. The correlation detector in Fig. 10b can be made the basis of a tracking 

device by attaching a phase-locked loop to track the carrier and using the carrier to clock the generator of the local 

code. The form of such a system is shown in Fig. 12. The inner loop i s  a phase-locked loop which tracks the clock. 
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CODE A ERROR 

CODE C CODE D 

- x - - -  
TO BE TRACKED - 

CODE B, LOCAL MODEL WHICH 
IS MATCHED TO CODE A 

X 
SIGNAL 

ERROR SIGNAL V 

- 
CODE X CLOCK D X -  x -  FILTER vco 

Fig. 11. Method of generating an error signal for tracking a code 

- 

CODE 

CODE 
GENERATOR 

90" * - 

Fig. 12. Double-loop code tracking device 

The outer loop forces the local code to follow the clock. The clock in the incoming signal is the c-Jck that was 

used to generate the incoming code so that they stay in phase. Suppose that the two codes are exactly in phase and 

that the output of the VCO is exactly in phase with the incoming clock. Then there is no dc signal a t  the output of 

the second multiplier. If the incoming code and clock tend to shift with respect to the local code and clock, there is 

a dc signal a t  the output of the second multiplier which causes the VCO to shift frequency and brings the local clock 

and hence the local code back into phase with the incoming signals. 
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This  two-loop tracking device is the heart of the ranging system receiver. In the ranging system the incoming 

code is acquired to establish the round trip time and is tracked to keep the measure of the round trip t ime continuously 

up to date. 

4. Clock frequencies and error curves. In the previous section the frequency of the clock relative to the 

switching frequency of the code was not mentioned. This is an important parameter. Before discussing the frequency 

of the clock, note that the error signal is a function of 7. Specifically, 

E ( 7 )  = codel(t) clock(t) code2(t + r )  clock 
p erio d 

In this case the integral can be approximately factored into two parts: 

code,(t) code2(t + 7) dt x clock(t) clock (t + + .> dt ] 
E(r) ' [ l e r i o d  ] [ l e r i o d  

But these two integrals are just  the correlation functions of the codes and of the clocks. Figure 13a shows the 

correlation function of a clock which is chosen to be a square wave for convenience in sketching the function, but 

which might equally well be a sine wave. Figure 13b shows the correlation function for a PN code which has  a 

period of the clock wave. Unfortunately, the resulting error function h a s  six stable null points. This  makes it un- 

suitable for the double-loop tracking device, since in actual operation it i s  not possible to predict which of the nul ls  

will be the operating point. 

A more suitable clock is one which h a s  a period equal to two digit periods of the code. The error curve of 

such a code and clock is shown in Fig. 14, which also shows another way of looking at the error curve. The double 

product can be written as 

(code, x clock,) (code2 x clock2) 

The error curve is then exactly the correlation function of the two waves shown in Fig. 14. This function m a k e s  a 

good e m r  curve in that there is  only one stable null near 7 = 0. There are two quasi-stable nulls near the odd half 

periods of the Correlation function. Sometimes these are troublesome in a system and sometimes they are not! One 

way of coping with this problem is described in the next section. 

' A  way of inverting the correlation function in the vicinity of the odd half periods has recently been suggested by J. 
Springett (Jet Propulsion Laboratory). 
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CORRELATION FUNCTION OF CLOCK AND CLOCK SHIFTED 1/4 PERIOD 

CORRELATION FUNCTION OF PN CODE 

ERROR FUNCTION FOR DOUBLE LOOP 

Fig. 13. Computation of error function for double-loop high-frequency clock 

The  existence of the inverted portion of the correlation function a t  7 = p1p2/2  i s  due to the fact  that at th i s  

point the PN components are in phase while the clock components are half a period out of phase relative to the 

phases at r = 0. 

C. Acquirable Codes 

1 .  Single component with clock. Individual methods for acquiring several types of codes will be given in 

this section. The code situations are l isted in increasing order of complexity. Perhaps the simplest acquirable code 

is the PN code itself. Certainly the PN code times clock described in the previous section is acquirable if some 

provision is made to avoid locking the loop a t  one of the quasi-stable nulls. However, such a code i s  not useful for 

ranging. 
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1 

PN SEQUENCE I I I 0 I 0 0  

1 PN CODE 

- 
CLOCK - - 

CODE X CLOCK 
- 

I CODE X SHIFTED CLOCK 

QUASI-STABLE DESIRED OPERATING 
NULLS POINT 

ERROR FUNCTION FOR DOUBLE LOOP 

Fig. 14. Computation of error function for double-loop best clock frequency 

2. Combined acquirable codes.  The first sequence that was selected for ranging used the combining function: 

W = X @ Y Z  

The autocorrelation function of such a sequence is computed in Fig. 15. Notice that since the Y and Z components 

enter into the combining expression symmetrically, it i s  only necessary to compute for one of them. Th i s  autocorre- 

lation function suggests a procedure for acquiring the code using a double-loop tracking device with some additional 

equipment as shown in Fig. 16. If, initially, the incoming clock h a s  a frequency different from the output of the VCO, 

then the two codes will slip past  each other continuously. If the rate of slippage is not too high, the phase-locked 

loop will lock up when the X components come into phase. (It  i s  assumed that some means not specified is used to 

prevent locking on the quasi-stable nulls.) At this  time the output of the VCO will be in phase with the incoming 

clock. Further, 62%% of the t i m e  the signal out of the first multiplier will be a clock in phase with the output of the 
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I 

Y Z ]  e c 1  

x e y z  

D X  x -  FILTER vco c- 

' 
. 

y GEN STEPPER 

zGEN C- STEPPER - 
LOG I C  I- 

Fig. 16. System for acquiring a three-component code 

VCO, while 37 Y2 % of the time i t  will be 180 deg out of phase. On the average, the output of the first multiplier may 

be considered as a clock in phase with the output of the VCO, but only 25% of full amplitude. This  signal is 

synchronously detected and shown on the meter. 

The second step in the procedure is to step the y generator a digit a t  a time until the two Y components are 

in phase. The meter, which is a correlation indicator, will then indicate a correlation of 1/2. The third s tep in the 

procedure is to step the z generator until the two Z components are in phase. The meter will then indicate a corre- 

lation of 1. 

The system just  described h a s  two disadvantages. First, and least  important, is the problem of the spurious 

nulls, which can be overcome by additional complexity. The second disadvantage i s  that this system requires the 

phase-locked loop to lock during the interval when the two X components are in phase. This  implies either a wide- 

band loop, which i s  undesirable when the noise level on the incoming signal i s  high, or a very slow sweeping rate, 

i.e., only a very slight initial difference in frequencies. In the ranging situation either of these alternatives is very 

unfavorable. In other applications this  may not be the case. 
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I The system shown in Fig. 16 can be used to illustrate another scheme for acquisition which i s  somewhat 

better than the one described. This makes use of the correlation function of a code with i t s  components. The corre- 

lation of the sequence W = X @ Y Z with i t s  components i s  computed in Fig. 17 and the interesting correlations 

, listed. This leads to a procedure in which only the X component is correlated in the first step and the correlation 

when the X component and the clock are acquired is 1/2 instead of 1/4. This higher signal h a s  an advantage in that 

i t  makes i t  easier for the phase-locked loop to lock up. However, the loop must st i l l  lock during the interval during 

which the two X components are in phase. 
I 
I 

3. Acquirable codes with a clock component. T h e  difficulty of locking up the clock loop on the fly, so to 

speak, has  led to the development of combined codes in which one of the components is the clock. The clock can be 

considered as a sort of degenerate PN sequence of lengtb 2. I ts  in-phase correlation i s  2 and i t s  out-of-phase corre- 

lation i s  -2. Unlike all other PN sequences it i s  perfectly balanced. An example of such a combined sequence is I - 
W = clock @ Y Z .  This  can be interpreted as W = clock when Y Z  = 0, and W = clock when Y Z  = 1. 

Since Y Z  = 0 occurs 75% of the time while Y Z  = 1 occurs 25% of the time, on the average W is a clock whose 

I amplitude is 50% of the full amplitude. Another way of looking at the situation i s  to compute the correlation as seen 

~ 

by the indicator in Fig. 16 but to include the clock in the computation. Then in Fig. 16 the incoming signal is 

clock @ Y Z  and the local signal i s  merely Y Z .  The loop i s  free to lock up immediately and can slip any number of 

cycles in locking. The Y and Z components can then be acquired as before. There i s  no X component as such. The 

correlation indicator readings for each step in the proceedure are: 

(1) clock not locked 0 

(2) clock locked 25% 

(3) Y locked 50% 

(4) Z locked 100% 

This procedure has  two very great advantages over previous procedures. First  there is a clock signal for the 

phase-locked loop to lock on even when no component i s  matched. Second, there are no quasi-stable false nnlls to 

which the sys tem can lock. The correlation function of the clock and the clock shifted 90 deg is the triangular 

function in Fig. 13a which has  no quasi-stable nulls. 

4. Methods of obtaining a clock component. There are several methods which might be used to give a clock 

component. The first is to use the clock as one component of the code. A second would be to add, in an analog way, 

a clock signal to the transmitted signal. This i s  not very attractive in a situation where the codes are being generated 
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by digital equipment, but i t  does suggest that the same average result could be obtained by switching between two I 

codes, one of which was a clock. For example, if i t  were decided to have a code which had a 50% clock component 

independently of the phases of the other component, one might have two digits of clock followed by two digits of 

code, etc. An example of this kind of a sequence is shown in Fig. 18. The corresponding sequence to produce the 

X COMPONENT 1 1 1 0 1 0 0 1 1 1 0 1 0 0  

CLOCK I O  1 0 1 0 1 0 1 0 1 0 1 0  

x @  C l  0 1 0 0 0 0 1  101  I I IO 

x e c 1  01 0 0  0 1  I O  0 0  I I I I  

C l  

X 

0 

MOD 2 SUM 

x @ ca 
CP 

X 

0 

MOD 2 SUM 

I O  I O  I O  I O  I O  I O  I O  

I I  I O  I I  0 0  I O  0 1  0 1  

0 0  0 0  0 0  0 0  0 0  0 0  0 0  

1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 l 0 l 0 l 0 l 0  

FULL AGREEMENT WITH CLOCK WHEN X 
COMPONENT IS IN PHASE 

01  0 0  0 1  I O  0 0  I I I I 

I O  I O  I O  I O  I O  I O  I O  

01 0 1  I I  I O  I I  0 0  I O  

0 0  0 0  0 0  0 0  0 0  0 0  0 0  

0 0  0 1  I O  0 0  I I  I 1  0 1  

I O  I O  I O  I O  I O  I O  I O  

AGREEMENTS = 6 

DISAGREEMENTS = 8 

C, = -1/7 

Fig. 18. Example of alternating PN and clock 

local code would have zeros during the clock digits and the X component during the other digits. The bit-by-bit 

correlation of these two alternating sequences is shown for the cases  when the X component i s  in phase and for a 

case when the X component i s  out of phase. This arrangement leads to 100% clock when the two X components are 

in phase and (approximately) 50% clock when the X component is out of phase. This is ,  of course, just  what would 

be expected. It i s  not even necessary to consider the digits which are strictly clock in making the computation. 
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Although it i s  not obvious, perhaps, the only effect of sampling the X @ clock i s  to rearrange the digits. Since the 

two X components are both sampled in the same way, their digits are both rearranged in the same way and this does 

not affect the correlation properties. 

D. Generation and Manipulation of Sequences 

1 .  Maximal length linear shift register sequences ( s e e  Ref.  2 ) .  Any periodic sequence i s  generated by a 

recursion formula; i.e., the nth digit is produced by some function of the preceding i digits: 

In the case of the maximal length shift register sequence the recursion formula is particularly simple, F being the 

modulo 2 sum of some of the preceding i digits, with i = loga (p + 1). The usual way of mechanizing the generation 

of such a sequence is shown in Fig. 19, where a sequence of length 31 is used for example. The shift register is 

SHIFT REGISTER 

*OUTPUT 
FIRST SECOND THIRD FOURTH FIFTH 

STAGE STAGE STAGE STAGE STAGE - - 
- 

RECURSION FORMULA O n = U n - 5  @ 0,-3 

Fig. 19. Generator for maximal-length linear shift register sequence 

used to store 5 consecutive digits. The mod 2 adder forms the sum of the digits in the third and fifth s tages  and 

feeds i t  to the input to the first stage. After the next shift of the shift register this digit i s  stored in the first stage. 

The sequence starting with ones in the shift register i s  shown to the right of the shift register and i s  read hom left 

to right. At first glance it might seem that the sequence should appear a t  the output of the mod 2 adder rather than at 

the output of the last stage, and well it might. Actually, the sequence appears at the output of the adder and at each 

43 



IPL Technical Report No. 32-67 

stage, the only difference being a phase shift. The shift register with feedback i s  a kind of oscillator and has  the 

same 

appears a t  all six points i s  listed with the proper relative phases. Figure 20 illustrates another point. The digits 

6 6  waveform’’ a t  all points except for a phase shift. This i s  illustrated in Fig. 20, where the sequence a s  i t  

L w w w w w  w 
U 0 0 0 0 0  0 

z z z z z  z W w w w w w  w 
I 3 3 3 3 3  3 

u u u u u  u w w w w w  w 3 
c n m c n c n m  u) z 

m 

I I I I I  0 31 
O I I I I  0 15 
O O I I I  0 7 
0 0 0 1  I I 3 
1 0 0 0 1  I 17 
1 1 0 0 0 0  24 
0 1 1 0 0  I 12 
1 0 1 1 0  I 22  
1 1 0 1 1  I 27 
1 1 1 0 1  0 29 
0 1 1 1 0  I 14 
1 0 1 1 I  0 2 3  
O I O I I  I I1 
1 0 1 0 1  0 21 
O I O l O  0 IO 
0 0 1 0 1  0 5 
0 0 0 1 0  0 2 
0 0 0 0 1  I I 
1 0 0 0 0  0 16 
0 1 0 0 0  0 8 
0 0 1 0 0  I 4 
1 0 0 1 0  0 18 
0 1 0 0 1  I 9 
1 0 1 0 0  I x) 
1 1 0 1 0  0 26 
0 1 1 0 1  0 13 
0 0 1 1 0  I 6 
I O O I I  I 19 
I 1 0 0 1  I 25 
I l l 0 0  I 28 
I I l l O  I 30 -INJECT EXTRA ON€ TO SHIFT LEFT 
I I I I 1  0 31 -INJECT EXTRA ONE TO SHIFT RIGHT 
O I I I I  0 15 

Fig. 20. Phases  of maximal-length linear shift register sequence 

stored in the shift register at any time may be considered to be a binary number. The decimal equivalent of the 

contents of the register is shown adjacent to each phase. All possible $digit binary numbers appear in the register 
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except zero. Since any linear (i.e., mod 2) combination of zeros yields a zero, that number i s  excluded. Because all 

the others are included, the sequence i s  a s  long as i t  is possible to have with a 5-stage shift register and linear 

feedback logic. Hence, the sequence is termed a maximal-length linear shift register sequence. 

Maximal-length linear shift register sequences are PN sequences and therefore useable as components of 

acquirable sequences. The use  of a component in an acquirable sequence requires that it be capable of being shifted 

both left and right. The convention chosen is that the time axis runs from left to right, past to future, so that shifting 

a sequence right one digit means that a given digit occurs one digit interval later than i t  otherwise would. If the shift 

register i s  not running new the maximum speed for the particular equipment being used, the sequence can be shifted 

by deleting or adding a shift. However, in some cases-for example, when the shift register is a delay line-this is 

not possible. It then becomes necessary actually to modify the sequence. To shift left it i s  necessary to delete a 

digit from the sequence. One way in which this may be done i s  to add a word detector which looks for a particular 

word in the shift register, and then injects an extra one into the mod 2 adder. If the word is properly chosen this will 

shorten the sequence by one digit. This  is a particular case of a more general situation which h a s  previously been 

described (Ref. 19). In the sequence shown in Fig. 19 and 20 the word detector should look for the word 11110. The 

next digit is normally a one, making the next word 11111. If an extra one i s  injected into the mod 2 adder, the next 

digit is a zero, and the next word is 01111. The total effect is to skip &e word 11111. The all ones word is the 

appropriate word to be skipped in any sequence. Of course, if only one shift is desired, provisions must be made to 

effect this operation only once. 

To shift right there are two possibilities: either repeat a word or add a word. The only word that can be 

repeated is the all ones word. This can be done by enabling a word detector that looks for the all ones and injects 

an extra one into the mod 2 adder. Again, this must be disabled after one operation if only one shift i s  desired. The 

only word that can be added i s  the all zeros. This  requires two word detectors, one to look for the word 0...01 and 

cause the following word to be O...O instead of 10 ... 0, and a second to look for the word O...O and cause the next 

word to be 10 ... 0. The choice between the two methods is a matter of convenience in the mechanization. Usually 

the word detector to look for the all zeros word is necessary anyway to act as an automatic starter. If, when the shift 

register i s  turned on, all of the s tages  happen to have zeros stored, no sequence, or, equivalently, a sequence 

exclusively of zeros will be produced. A word detector to detect the al l  zeros and inject a one into the mod 2 adder 

will then act to start the sequence. This  word detector is then available for use in the shifting process. 

One other manipulation that i s  useful in a ranging system i s  synchronization. It i s  desirable to synchronize 

two sequence generators that are generating the same sequence. This  can be done by feeding the output of one 

45 



IPL Technical Report No. 32-67 

feedback logic into both first stages. As soon a s  i digits have passed, the contents of the two registers will agree, 

and if the generator being synchronized is returned to noma1 operation i t  will continue in synchronism. Of course, 

the two generators must be clocked from the same source in order to be synchronized. 

2. Direct generation of other PN sequences. PN sequences other than the maximal-length linear shift 

register sequences can also be generated by a shift register with feedback, but there are two differences. First, the 

sequences are not maximal length, SO that proportionately more stages are required in the shift register; and second, 

since the sequences are not linear, the feedback logic may be more complicated. Therefore, in general, a generator 

for one of these sequences may be much more complicated than for a maximal-length linear shift register sequence of 

comparable length. Although a shift register with more stages is no particular problem, the feedback logic may be 

so complicated that a large computer operation i s  required to express it  in a reasonably reduced form. 

Starting such a generator may also be a problem. Since such sequences are, in general, far from maximal, 

there are many possible s ta tes  for the shift register which are not used in the sequence. In fact, most of the possi- 

ble s ta tes  may not be used. A sequence of length 43 requires an 11-stage register so that only 43 of the 2048 

possible s ta tes  are used. To achieve reliable starting, provisions must be made to assure that if the register starts 

in one of these unused s ta tes  i t  will progress to one of the s ta tes  used in the sequence. The problems of shifting 

such a sequence are also complex although it appears that they can be solved. In order to have a simpler design 

procedure (though perhaps at the cost of more equipment), the method described in the following sections was 

developed. 

3. Generation of a sequence of arbitrary length. A generator for a linear shift register sequence of maximal  

length may be considered as a sequential machine and described by a state diagram. The state diagram for the 

machine shown in Fig. 19 is shown in Fig. 21. Each state is designated by the number on the register. Th i s  

machine is degenerate in that i t  has no inputs. Also, in drawing the state diagram it was assumed that the machine 

included a starter so that the zero state leads to the 16 state. It is a property of a shift register with feedback that 

a given state can have only one of two possible successors: that produced by feeding back a one and that produced 

by feeding back a zero. The feedback selects one of the two possible choices for the successor of each state. If 

the machine shown in Fig. 21 were altered so that state 11 followed state 22 instead of state 27, a sequence of 

length 27 would be produced instead of a sequence of length 31. If the alteration in the machine is done properly 

(Ref. 20), the machine is still self-starting, and since the I . . .  1, 10 ... 0, and 0...01 words are in the cycle, the 

sequence may be shifted both right and left. It is a property of the maximal-length linear shift  register sequence 

that i t  can be shortened by any desired amount; i.e., if a sequence of any arbitrary length is desired, a state can be 

found whose alternate successor yields a sequence of the desired length. 
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Fig. 21. State diagram for a sequence generator 

4 .  Indirect generation of other PN sequences.  A P N  sequence other than a maximal-length linear sh i f t  

register sequence can be generated from a sequence of the type described in the previous section. A maximal-length 

sequence i s  shortened to the desired length and additional logic is used external to the feedback loop to convert the 

shortened sequence to the desired PN sequence bit by bit. Such a generator will be self-starting. If the shortened 

sequence contains the words necessary for shifting, then the shortened sequence can be shifted, and, of course, the 

derived sequence will be shifted also. If the necessary words are not included in the shortened sequence, then no 

general approach to the problem of shifting is known. The external modification of a shortened maximal-length 

sequence i s  the principal alternative to the method of the previous section for the generation of arbitrary (and 

especially nonlinear) PN sequences. 
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5. Stored sequences. Instead of generating a sequence digit by digit as needed, the entire sequence can be 

stored in a long s h i f t  register, one digit per stage. If the shift register i s  a delay line, the amount of equipment 

required for sequences of lengths up to several hundred is not large. The problem of shifting is then handled by 

precessing the digits in the shift register using standard techniques. While this approach solves the problem of 

shifting, i t  begs the question of how the sequence is originally generated. 
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IV. CODED PHASE-COHERENT COMMUNICATIONS 

The merits of phase-coherent communications are widely recognized for both discrete and continuous modu- 

lation systems (Ref. 21-23). The relative performances of phase-coherent and noncoherent transmission of binary data 

in the presence of additive white gaussian noise have been analyzed and compared (Ref. 21 and 22). This  section 

considers the result of encoding independent equiprobable binary words or sequences of independent binary digits 

into sets of binary code words. These code words are transmitted over a channel perturbed by additive white gaussian 

noise and are detected by being correlated with their stored or locally generated replicas at the receiver. 

The word error probabilities and bit emor probabilities for low cross-correlation codes are determined as a 

function of the ratio 

received signal energylbit 

noise power'unit bandwidth 

The received information rate and the potential channel capacity are also computed. It is shown that in the l imit  as 

the code word length and the bandwidth approach infinity, the received information rate approaches the channel 

capacity for one and only one value of the above ratio. 

A. The Basic Model 

In order to communicate n bits of information, 2" distinct choices must be available at the transmitter. These 

2" arbitrary messages or words are to be stored or generated at the transmitter. Depending on the information to be 

sent, one of the 2" words is sent  over a period of nT sec, T being the transmission time allotted per bit. The com- 

munication channel is assumed to add an arbitrary disturbance to the transmitted signal (Fig. 22). The ideal receiver 

computes the conditional probability that each of the possible 2" words was transmitted over the interval of n T  see, 

given the received word. It has  been shown by Woodward (Ref. 241, Davies (Ref. 24 and 251, and Fano (Ref. 25) that 

if the channel disturbance is white gaussian noise, the probability computer consists of 2" correlators which multiply 

the incoming signal by each of the 2" stored or locally generated replicas of the possible transmitted words, integrate 

over the transmission interval, and are sampled at the end of this t ime. Thus the output of the kth correlator, which 

corresponds to the kth word x k  is 
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CHANNEL NO1 SE 

MES~AGE 
SELECTOR 

TRANSM I TTER 

_ _ _ _ _ _ _ -  - - - - - - - -  

I RECEIVED 

I 
STORED ' MESSAGE 

I 

I 

DISCHARGED AT END 1 
OF MESSAGE 1 

I 2" H 2" 
STORED I CoRRELAToRS MESSAGES 

I DECISION DEVICE I 
Y OUTPUT 

RECEIVER 1 

ONE OF THE 2" CORRELATORS J I 
L - - - - - - - - - - - - - - -  

Fig. 22. Basic communications-system model 

where y ( t )  = x m  ( t )  + N ( t ) ,  x,(t) is the received signal, and N ( t )  i s  the channel noise. If the 2n words were a priori 

all equally likely to be transmitted with equal energy, i.e., 

for all i and j :  then the conditional probability that x k  was sent, given that y w a s  received, is proportional to the 

exponential of the output of the kth correlator (Ref. 26). 

The decision device then examines all the correlator outputs and selects  the waveform zk ( t )  corresponding to the 

maximum correlator output. This  is known a s  maximum-likelihood detection and can be shown to minimize the 

probability of error when all the signals are equally likely and contain equal energies (Ref. 27). 

I t  follows intuitively that in order to achieve low error probabilities, the waveforms should be a s  unlike as 

possible, such that in a noisy channel there will be the least  possible chance to make the wrong selection of the 

word transmitted. More precisely, the cross-correlation coefficients among all pairs of words, 
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P =  
x [ J,” x; ( t )  dt J’ 22 ( t )  at] 

0 1  

should be made as low as possible. The least possible value of p is -1. However, this value can be achieved only 

when the number of words in the se t  is two ( n  = 1). In this case,  if z,(t) = -z,(t), p = -1, and the words are said to 

be antipodal. In general, it is possible to make all the cross-correlation coefficients equal to zero. The set of words 

is then said to be orthogonal. Actually, it is possible to obtain sets of words for which some or all of the cross- 

correlations are negative (see Section IV-C). 

B. Realization of the Model 

The concepts discussed in the preceding section date back almost ten years. Lit t le h a s  appeared in the 

literature on the subject of coded phase-coherent communication since that t ime because of the difficulty in realizing 

the basic model with stored waveforms (other than for the case of binary waveforms in which one bit at a time is 

transmitted). The  problem is greatly simplified by using binary sequences as the transmitted words, since these can 

be generated at both transmitter and receiver by relatively simple code generators. 

Figure 23 is an example of such a binary coded phase-coherent system. The  term “phase-coherent” refers 

not only to the coherence between the transmitted carrier and the locally generated carrier, but a lso to that between 

the transmitted and locally generated code words. 

Blocks of two bits of information are transmitted by selecting 

set is orthogonal, since the words switch between plus one and minus 

one of a set of four binary code words. This 

one, and it is easily verified that 

for i 4 j. 

Phase  modulation of K sin wt by T rad when the word is at the -1 level is equivalent to amplitude modula- 

tion of the carrier by plus ones and minus ones. At  the receiver, the noisy signal is demodulated and fed to the four 

correlators. Only the low-frequency component of these inputs i s  shown in Fig. 23. Actually, the component centered 

at a frequency of 2w rad/sec is eliminated by the integrator, provided w is a multiple of ~ / 2 n  T, where n is the 

number of bi ts  per word. 
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CODE GENERATORS 

f K s i n w t  

K sin w t  

TRANSMITTER 

f ,LA sin w t + ~ ( t )  (WHITE GAUSSIAN NOISE) 

Y 

I 

RECEIVER 

Fig. 23. Binary coded phase-coherent system for 
transmission of 2 bits/word 
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Because the code words are orthogonal, the outputs of all correlators, except the one corresponding to the 

word sent, are zero in the absence of noise. If this were not the case, the noise-free output of the ith correlator 

would be proportional to 

when the jth word was sent. 

The properties and generation of the binary code words are discussed in Section IV-C. For the present, other 

characteristics of the model will be considered. It should be noted that multiplication of the additive noise by the 

locally generated words does not alter i t s  white gaussian statistics, since multiplying successive uncorrelated 

samples of noise arbitrarily by plus one and minus one does not alter the first-order distribution, nor does it render 

them correlated. 

In general, i f  n bits are transmitted as one word, the integrating time i s  nT. The integ;rate-and-discharge 

filter is assumed to produce an attenuation of 1/nT. Thus, the signal will produce an output at time nT of e (nT)  = A, 

provided that w n T  i s  a multiple of ~ / 2 .  The channel noise i s  white gaussian with spectral density N / 2  B. (This 

input spectral density would produce a power of N w a t t s  at the output of a bandpass filter of bandwidth B . )  The 

variance at time n T  at the output of the integrate-and-discharge filter i s 2  

3 fl sin w uh' (u) du inT u2 = E [s 1" \/z s i n  o t N ( t ) d t  

nT  
= 1 LnT E [ N ( t )  N ( u ) ]  2 sin u t  s i n  a u  dt du 

( n n 2  

Since the noise is white with density N / 2  B, 

2The noise contribution to the input of the integrate-and-discharge filter ism ( t )  sin ot multiplied by a binary code 
word. However, since this binary multiplication does not alter the statistics of the noise, it may be neglected. 
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Therefore, 

N 
2 sin2 at dt = - 

(T2 = N rnT 
2 B ( n T I 2  j 0  2 BnT 

provided that o n T  i s  a multiple of 77 ' 2 .  

The ratio of peak output signal to the noise standard deviation is 

( N  2 BnT)% \ N ; B  1 \ N B /  

where S = A 2  is the received signal power. Since T is the transmission time per bit, the ratio 

received signal energy/bit 

N 'B  noise power'unit bandwidth 
- -  - 

ST 

This  is the basic parameter for communication in the presence of white gaussian noise; the numerator represents the 

parameters which may be varied by the communicator, while the denominator is the characteristic property of the 

channel. 

In Section IV-C it i s  shown that if a set of 2" code words i s  to be orthogonal each word must contain 2n 

symbols; that is, there are  2" subintervals during which the word may be at either the plus one or minus one level. 

Each symbol is o f  duration nT/2" sec. Since the carrier is the sinusoid sin at, it  is possible to have other sinu- 

soidal carriers at 

27Tv 

n T / 2 n  
w +  ___ , (v = +1, 5 2 ,  53, -4  

without interfering with the given signal, provided o is a multiple of v / ( n T / 2 ' ) ,  because over any given subinterval 

nT/2" 

n T / 2 "  

sin at sin [ (i~ + ,y> n T /2"  t + 4 1  dt = 0 
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for Y =  f l ,  f2 ,  +3. ... . Thus, the effective bandwidth occupied by the channel is 2"/nT cps. If the sinusoidal 

carrier of the adjacent channel were constrained to alternate between 4 = 0 and 4 = 7r relative to the given channel 

(i.e., if it were modulated in the same way), then the adjacent sinusoid could be placed n/ (nT/2")  rad/sec away 

without interfering, thus making the effective bandwidth occupancy per channel only 2"-l /nT cps. 

Another characteristic of orthogonal code sets which is worth noting is that the noise components of the 

correlator outputs are mntudly independent. Of course, the white noise inpnt is the same for each correlator. How- 

ever, during each of the 2" code subintervals, the noise will be multiplied by plus one or minus one. Thus, the cross- 

correlation between the noise components of any two correlators i and j is proportional to 

where x i ( t )  and x i ( t )  are f1 during any given interval. Since the noise is white, the in tepa l  over one interval is in- 

dependent of the integral over another. Thus, 

for k f m and 

L J L 

If the two codes xi and x .  are to be orthogonal, however, there must be exactly as many subintervals during 
I 

which x i  and xi are of different s igns as there are subintervals during which they are of the same sign ( see  Section 

IV-C). Thus, for orthogonal codes, pN = O .  

The optimal decision process and the error probabilities are considered in Section IV-D. The next section 

will treat some basic properties of binary codes. 
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C. Binary Codes 

This section contains a brief description of the construction and basic properties of certain error-reducing 

codes. For a more thorough treatment, the reader is referred to the literature on coding3 (Ref. 2.8 and 29). 

1 .  Orthogonal codes.  A property of a set of orthogonal codes is that the cross-correlation coefficients 

among all pairs in the s e t  are zero. That is, for the code words 

(where the xi's and y i ' s  can take on the values plus one or minus one) the sum of the products of corresponding 

symbols is 
k 

i = l  
c x i  yi = 0 

It i s  sometimes more convenient to write the codes using the symbols zero and one rather than plus or minus one. 

The orthogonal property can then be stated as follows: Two code words are orthogonal if the number of symbol 

positions in which they are similar equals the number in which they are dissimilar. 

Sets of orthogonal codes can be constructed in a multitude of ways, since the 2"elements of any bas i s  of a 

2n-dimensional vector space over the field of two elements can be made orthogonal to one another (Ref. 30). A 

simple inductive construction of a set of orthogonal codes follows. 

A single bit of information may be sent  by selecting from a set of two orthogonal code words of two symbols 

each: 

0 0  

0 1  

Two bits might be sent by using the code word set 

0 0 0 0  

0 1 0  1 
0 0 1 1  

0 1 1 0  

31t should be noted that these codes are usually classified in the literature as "error-correcting codes" because their re- 
dundancy permits correction of up to a given number of erroneous symbols after the message has been received and demodulated 
on a symbol-by-symbol basis. The present treatment differs from this in that the redundancy i s  utilized to decode the entire word 
in one operation rather than piecemeal. Hence, the property which i s  required of these redundant codes i s  a uniformly low cross- 

correlation coefficient. 
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I t  should be noted that this s e t  can be constructed by extending the set  for one bit both horizontally and vertically. 

The  lower-right-hand square is filled by the complements of these words. A code set  for three bits may be constructed 

by extending the set for two: 

0 0 0 0  0 0 0 0  
0 1 0 1  0 1 0 1  

0 0 1 1  0 0 1 1  

0 1 1 0  0 1 1 0  

0 0 0 0  1 1 1 1  

0 1 0 1  1 0 1 0  

0 0 1 1  1 1 0 0  

0 1 1 0  1 0 0 1  

To prove that the construction yields an orthogonal code set a t  each step, assume that such a construction exists for 

k bits. Then for k + 1 bits, extending the 2k words vertically yields a s e t  of 2k+1 words which are all orthogonal 

except that each word in the top half i s  the same a s  one word in the bottom half. However, extending the word hori- 

zontally, the upper half of the extensions i s  the complement of the lower half. Again, all horizontal extensions are 

orthogonal, except that each word extension in the top half has a s  its complement in the bottom half the extension of 

that word for which the left halves are equal. Thus, each pair of words in the new se t  has  a s  many similar symbols 

a s  i t  has  dissimilar ones. Hence, the set i s  orthogonal. 

2. Biorthogonal codes. These codes were first discovered by Muller and Reed (Ref. 28). They can be 

generated by taking a set of orthogonal code words and adding to i t  the complements of each word. Thus, biorthogonal 

codes are really two sets of orthogonal codes which are mutually orthogonal except that each code word in one se t  

h a s  i t s  complement (or antipode) in the other set. A biorthogonal or Reed-Muller code for 4 bits can be constructed 

from the preceding orthogonal code for 3 bits: 

0 0 0 0 0 0 0 0  1 1 1 1 1 1 1 1  
0 1 0 1 0 1 0 1  1 0  1 0  1 0  1 0  
0 0  1 1 0 0  1 1  1 1 0 0 1 1 0 0  

0 1 1 0 0 1 1 0  1 0 0  1 1 0 0  1 
0 0 0 0 1 1 1  1 1 1  1 1 0 0 0 0  

0 1 0 1 1 0 1 0  1 0 1 0 0 1 0 1  

0 0  1 1 1  1 0 0  1 1 0 0 0 0 1 1  

0 1 1 0 1 0 0 1  1 0 0  1 0  1 1 0  

One advantage of this s e t  over the corresponding orthogonal s e t  i s  that i t  requires one-half as many symbols 

per code word. Thus, the bandwidth required to transmit the same number of bits/sec i s  cut in half. Also, the average 
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cross-correlation coefficient among all the codes in a se t  of 2" words i s  -1./(2" - 11, as will now be shown. There 

are in all (2" - 1) 2n-' pairs. The cross-correlations are minus one for 2"-' pairs and zero for all the rest. Thus, 

the average correlation i s  

1 

2" - 1 
- -~ (- 1) 2"-1 

(2n - 1) 2"-1 
- 

Sets of biorthogonal codes have equal numbers of zeros and ones.  This  is a favorable property since, if all 

words are equally likely, i t  assures  that the modulating signal will have zero mean; hence, all the power in the 

carrier will be modulated. 

3. Shift-register codes .  It i s  known (Ref. 2) that certain shift registers with linear modulo 2 feedback logic 

produce codes which have two-level autocorrelation functions. If the register has length n and the code i s  of rnaxi- 

mal length, 2" - 1, the lower level will be -1/(2" - 1) (see Fig. 24). Thus, a s e t  of 2" - 1 codes with a uniform 

. . . .  I .  . . . .  i 
CODE SYMBOL 

S H  I FJS 

Fig. 24. Autocorrelation function of shift register code 

negative cross-correlation coefficient can be constructed by taking all shifted replicas of one maximal-length shift- 

register sequence. For example, a se t  of seven code words can be generated by taking all possible shifts  of the 

sequence from a three-stage shift  register with linear logic, as shown in Fig. 25. The eighth code word in this 

figure i s  the 0-vector (0 O O O O O 0). The cross-correlation coefficient among all possible pairs i s  -1/(P - 1). 

L J - 4  MODULO-2 ADDER 
1U 
4 MODULO-2 ADDER I 

1 1 0 1 0 0 1  
1 1 1 0 1 0 0  
0 1 1 1 0 1 0  
0 0 1 1  1 0 1  
1 0 0 1 l l O  
0 1 0 0 1 I I  
1 0 1 0 0 1 I  

Fig. 25. Shift register and generated code 

58 



IPL Technical Report No. 32-67 

Shift registers can be used to generate orthogonal or biorthogonal codes quite simply. For example, if a zero 

is added to every word of the set of Fig. 25 and to the 0-vector, a se t  of eight orthogonal code words i s  obtained. By 

taking the complemented output of the shift  register, the complementary orthogonal s e t  i s  also obtained: 

0 1 1 0 1 0 0 1  1 0 0 1 0 1 1 0  

0 1 1  1 0  1 0 0  1 0 0 0 1 0 1 1  

0 0 1 1 1 0 1 0  1 1 0 0 0 1 0 1  

0 0 0 1 1 1 0 1  1 1 1 0 0 0 1 0  

0 1 0 0 1 1 1 0  1 0 1 1 0 0 0 1  

0 0 1 0 0 1 1 1  1 1 0  1 1 0 0 0  

0 1 0 1 0 0 1 1  1 0 1 0 1 1 0 0  

0 0 0 0 0 0 0 0  1 1 1 1 1 1 1 1  

This  example can be generalized to any number of bits. 

To  demonstrate how elegantly shift-register code generators can be used, consider the case  in which the 

sequence 100 1 is to be transmitted by a biorthogonal code sequence. The first digit is transmitted immediately, 

while the digits 00 1 are loaded from right to left into the register of Fig. 25, which is made to circulate, and the 

complemented output digits of the shift register are transmitted. Thus, the whole transmitted sequence is 

11 1000 10, one of the words in the above set. If the first digit had been a zero, the uncomplemented output digits 

of the shift register would have been transmitted. Thus, each possible combination of four binary digits would 

generate a different word in the set. 

A s  described in Section 11, the maximum-length shift-register sequences are merely a subset of the set of all 

periodic binary sequences with two-level autocorrelation R (n) satisfying 

1 if n I 0 (mod p) 

-1/p i s  n z 0 (mod p) 
R ( n )  = 

where p is the period. All the remarks of this section apply to this larger class,  except those referring to the special 

ease of generating linear shift-register sequences. 
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D. Optimal Decision and Probability of Error 

1. Orthogonal codes .  The typical receiver for coded phase-coherent communication was shown in Fig. 23. 

The outputs of the correlators are fed into a device which determines the waveform most probably sent. If the 

a priori probabilities of the various code words are all  equal, the disturbance i s  white gaussian noise, and the 

energy in a l l  transmitted words i s  the same, Eq. (1) indicates that the word which was most probably transmitted i s  

that which corresponds to the maximum correlator output. 

The probability that the word which was sent will be chosen correctly i s  equal to the probability that the 

output of all the other correlators will be smaller than the output of the given correlator. Assume that in the absence 

of noise, the output of the correlator corresponding to the word sent  i s  A and that the standard deviation of the out- 

put noise of any comelator i s  U. For a s e t  of 2n code words, the probability that the correct one will be chosen i s  

where p(xi) is the probability density of the output of the correct correlator and 

i s  the probability that the output of the j t h  incorrect correlator will be less than the correct correlator output. The 

second equality of Eq. (6) holds because the correlator noise outputs are mutually independent ( see  Section IV-B). 

Then, for the given parameters, 

Making the substitutions z = Y ' U  and u = ( x  - A ) / a  yields 

e - y 2  l 2 O 2  

. - z 2 / 2  
dz]  2"-1 

(7) 
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The probability that a word is in error is 

I t  was shown in Eq. (5)  that the ratio of the output from the correct correlator to the standard deviation of the 

noise is 

Then, 

This  integral cannot be evaluated analytically in general. However, numerical integration by an IBM 704 computer 

yielded the results of Fig. 26 for code words containing up to 20 bits of information. 

It is also of interest to investigate the behavior of Eq. (9) a s  n tends to infinity. Taking l imi t s  and using 

the asymptotic expression for the error function, 

L 

-n S T / (N / B ) e 

To evaluate this l imit ,  consider the limit of its logarithm: 
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S T / (N/B ) 

Fig. 26. Word error probability -orthogonal codes 

where 
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Treating n a s  a continuous variable and using I'Hospital's Rnle, 

lim = lim 
n + m  2-n -2-" In 2 

If 

this limit of the logarithm is zero; otherwise, it is unbounded negatively. Thus, for 

ST 
- > In 2, lim ~ , ( n )  = 1 - eo = o 
N/B n-, a 

while for 

ST - m  - .< In 2, l im  P,(n) = 1 - e 
N/B n+m 

= 1 (11) 

that i s ,  the error probability for an infinitely long word jumps fmm one to zero at the critical value 

received signal energy/bit 

noise power/unit bandwidth 
= In 2 

2. Biorthogonal codes. To demodulate a set of 2" biorthogonal code words carrying n bits, only 2"-' come- 

lators are required. This  is due to the fact that in the absence of noise any one correlator will produce a positive 

voltage + A  at t ime n T  for one code word, a negative voltage -A for i t s  complement, and zero voltage for all the rest. 

Thus, only one orthogonal code set need be generated at the receiver. The first step in the decision process is to 

ec-tablish whether the voltage a t  t ime nT at the output of a given correlator is positive or negative; thereafter, the 
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situation is the same as for orthogonal codes, and the optimal decision in the presence of white gaussian noise is 

to choose the one corresponding to the greatest output. 

The correct word will be selected if  the.absolute values of the outputs of all the other correlators are l e s s  

than that of the given one, and if the output of the correct correlator is of the right sign. Without l o s s  of generality, 

assume that a word has been sent which produces a voltage + A  at  time n T  on correlator z. The probability that i t  

will be selected by the decision process is 

where 

(This expression is valid because the noise outputs of the correlators are independent since the noise components 

are again multiplied by orthogonal words.) 

In terms of the gaussian densities, 

Making the substitutions, 

and recalling from Eq. (5) that 
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the word error probability for biorthogonal coding i s  

I ( 12) 

1 This expression was also evaluated, using an IBM 704, for various values of n and the results plotted in Fig. 27. Its 

limit as n approaches infinity cau be computed in the same way as for orthogonal codes, and the result i s  the same. 1 
I 

Fig. 27. Word error probability -biorthogonal codes 
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3. Comparison of coded and uncoded word error probabilities. If a single bit were to be sen t  using a biortho- 

gonal code, the code set would degenerate to two words of one symbol each. This  i s  the special case of communi- 

cation with two antipodal signals (such a s  plus one and minus one). In this situation, which is referred to a s  

uncoded, the probability that each bit i s  in e m r  is obtained by letting n = 1 in Eq. (12): 

-"2/ 2 2 
e ,-v / 2  

dv = dv ( 13) 

If it i s  desired to transmit an n-bit word by sending one bit at a time by means of antipodal signals, the probability 

that the word will be received in error is one minus the product of the probabilities that each bit will be detected 

correctly. Thus, 

This  expression i s  plotted in F i g  28. For the sake of comparison, Fig. 29 and 30 show the word error probabilities 

for coded and uncoded transmission, and, as might be expected, the two coding schemes produce almost identical 

results for large 2n. Also, the improvement due to coding for n = 10 is almost twice a s  great as for n = 5. 

E. Bit Error Probabilities 

The significant measure of a communication system's performance depends upon its use. If a sequence of 

n-bit messages such a s  teletype or sampled data i s  to be sent, the word error probability i s  the important parameter. 

On the other hand, if a sequence of independent bits is sent, the bit error probability should be determined. 

For orthogonal coding, since all errors are equally probable, the expected number of bits in error when n-bit 

coded word has  been detected incorrectly is 

2" - 1 

i = l  

Thus, the conditional probability that a given bit i s  in error when the n-bit word within which it was encoded i s  

incorrect is 2"-1/(2" - 1). 
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sr / W / B )  

Fig. 28. Word emc probability -nneoded 
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68 

Fig. 29. Comparison of coded and uncoded word 
error probabilities; n = 5 
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I 

Fig. 30. Comparison of coded and uncoded word 
error probabilities; n = 10 
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Then, in terns of the word error probability P,,,(n) for an n-bit orthogonal code word, the bit error probability 

i s  

nn-1 

Figure 31 presents these 

0. I I. 0 

sr  (NIB) 

IO 100 

Fig. 31. Bit error probability -orthogonal codes 
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For biorthogonal codes, the situation is somewhat more complicated. The probability of selecting the code 

word antipodal or complementary to the transmitted word i s  much lower than that of selecting a word orthogonal to it. 

Following the derivation of Section IV-D, this probability, which shall be termed an error of the first kind, is 

The probability of selecting one of the 2" - 2 code words orthogonal to the trananitted word, which shall be termed 

an error of the second kind, is the total probability of error [P,(n) of Eq. (la] less P,(n). 

It is assumed that complementary message words are coded into complementary code words so as to minimize 

the probability that a word error will cause all bits to be in error. Then, if an error of the first kind is made, the 

number of bits in error i s  exactly n; the conditional bit error probability, given that an error of the first kind was made, 

is 1. If an error of the second kind is made, the expected number of bits in error is 

n - 1  
z i ( r )  

i = l  (n - 1) 2"-2 

Thus, the bit error probability, given that an error of the second kind was made, is 

The total bit error probability for biorthogonal codes is then 

Figure 32 represents these results. 
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.I ID IO 

ST / ( N/B)  

I O 0  

Fig. 32. Bit error probability -biorthogonal codes 

F. Information Rata and Channel Capacity 

A measure 'of communication-system performance which transcends the subjective use of the received 

message is the channel information rate. Naturally, in the absence of noise, the information rate H is equal to the 

transmission rate, 1 / T  bits/sec. A noisy channel, however, increases the uncertainty of the received information 

and hence decreases the rate of actual information received. This  uncertainty or decrease in information, treated in 

the context of the definitions of information theory for a discrete channel (Ref. 311, has  been shown to be 

H , ( y )  = - I j $ P ( ~ i , y i )  log2 P ( y i  I z ~ )  ( 19) 
' I  
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where zi and yi are arbitrary transmitted and received signals, respectively; H,(y) is the uncertainty that y was 

received when z was sent; phi, y> is the joint probability that xi was sent and y.  received; and p(yj ]xi) is the con- 

ditional Probability that y .  was received, given that zi was sent. 
J 

J 

1. Orthogonal codes. The transition probability diagram between transmitted and received words for codes 

having zero cross-correlation coefficients is shown in Fig. 33. Only a portion of the diagram need be shown, since 

TRANSMIT 
WORDS 

XI 

'TED RECEl VED 
WORDS 

Fig. 33. Diagram of transition probabilities in the presence 
of noise -orthogonal codes 

the pattern is repetitive. The probability that the transmitted word was received correctly is 1 - P, (n), while the 

probability that any one of the other 2" - 1 words was incorrectly chosen is [P , (n) ]  /(2" - 1). Applying Bayed Rule 

to Eq. (191, 

HJy) = -? P h i )  5 P ( y j  ( r i )  log2 P'? I%$ = -? P ( Y j  1%) log2 P ( y j  1%) 
I I J 

since the errors are independent of the words sent. Then, with the transition probabilities of Fig. 33, 

is the equivocation per n-bit word. 

Since the rate of transmission is 1/T bits/sec or l/nT words/sec, the equivocation rate is [ H , ( y ) ]  /nT. 

Subtracting this from the transmission rate4 yields the received information rate: 

41n general, the equivocation H,(r) should be subtracted from the received entropy H(y) P(yi) log P (y). However, 
in th i s  case, since the transition probabilities due to noise are all the same, [H(y)]/nT = [ H ( r ) ]  /dT = 1/T, the transmission 
rate. 
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This measure is plotted in Fig. 34 as a function of the basic parameter S T / ( N / B ) .  I t  is seen that as n increases, the 

speed with which the information rate approaches 1 /T  increases. In the limit ,  as n approaches infinity, P,(n) was 

shown to go from 1 to 0 stepwise a t  S T / ( N / B )  = In 2. Thus, the information rate also behaves stepwise in the l imit  

going from 0 to 1/T at  this value of the parameter. 

ST/  ( N / B )  

Fig. 34. Received information rate -orthogonal codes 
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I Another important measure of information theory is the celebrated channel capacity. For our purposes, this 
I 

may be defined as 

c ( 2 )  = :?possible [. (-31 
coding methods 

(22) 

Shannon (Ref. 32) has shown that this maximum can be achieved for continuous gaussian-distributed signals and 

white gaussian noise in the l imit  as the number of bits per message becomes infinite. It is given by the well-known 

formula, 

C = B logq (1 + +) 
A s  was shown in Section IV-C, the bandwidth occupancy of orthogonal 

and 

odes is B = (2"/nT) 

c = T { f log2 [' + ($]}e s e c  

ps. Thus, 

(23) 

In the limit, the capacity behaves as 

Channel capacity is plotted in Fig. 35 as a function of S T / ( N / B )  for several values of n. 

It is of interest to determine how near to the absolute maximum an information rate can be achieved with a 

coded phase-coherent communication system. A s  has  been noted, in the limit as the message length and bandwidth 

go to infinity, an information rate of 1 / T  can be achieved with S T / ( N / B )  = In 2. Equation (24) shows that for this 

value of S T , / ( N / B ) ,  the channel capacity is, in fact, 1/ T; thus, in the limit of infinite coding, the channel capacity 
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0 I 2 3 4 5 6 7 8 

Fig. 35. Channel capacity -orthogonal codes 

can be achieved. For higher values of S T / ( N . ' B ) ,  lim H naturally remains constant at 1 / T  while lim C increases 

linearly; thus, the efficiency H / C  decreases in inverse proportion to the parameter (Fig. 36). 
n +  00 n +  

Two observations with regard to these parameters are in order. When bandwidth is at a premium, channel 

capacity and channel efficiency are important parameters. However, when bandwidth is of secondary importance and 

the basic purpose is only to transmit with as low an error probability or as high an information rate (1) as possible, 

the channel efficiency is not a significant measure of performance. Also, when reasonably error-free reception i s  

required, it  is not meaningful to speak of the information rate or channel efficiency. For example, i t  is seen in 

Fig. 34 that the received information rate is 82% of the transmission rate for a 10-bit word and a ratio of S T  '(1 ' E )  = 1. 

However, from Fig. 26 and 31, i t  i s  seen that the word error probability is 0.12 and the bit error probability i s  0.06 

for this case, which indicates rather poor reception. 

I 

2. Biotthogonal codes. The transition probabilities for this  type of coding were discussed in Section 11;-E. 

The transition diagram i s  shown in Fig. 37. 
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I 

Fig. 36. Channel efficiency -orthogonal codes 

Fig. 37. Diagram of transition 
probabilities in the presence of 

noise-biorthogonal codes 
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and 

c =  L { G l o g 2 [ l +  T 1(;)]} 2"-1 bits sec  

T n T  sec 

The bandwidth occupancy for biorthogonal codes is only 2"-'/nT, and half that for orthogonal codes. Thus, 

and 

1 ( ST \ bits lim C = -  - - 
n +  m T l n  2 \ N / ' B /  sec  

Equations (26) and (27) and their ratio are plotted in Fig. 38, 39, and 40, respectively. I t  i s  seen that the efficiency 

for small n is greater than for orthogonal codes because of the lesser bandwidth occupancy. However, for large n, 

the received information rate and channel capacity, and hence the efficiency, are about the same for both types of 

coding. 

G. Conc iu si on I 

Coding of infomation into sets of sequences characterized by low cross-correlation coefficients has the 

effect of reducing the error probabilities at the cost of expanding the bandwidth for a fixed rate of transmission. If 

the time alloted per bit is T sec  and the number of bits per code word is n, the transmission rate is 1/T bits/sec or 

l / nT  words/sec, and the effective bandwidth is 2"/nT cps for orthogonal codes and 2n-1/nT cps for biorthogonal 

codes. 

If five bits of infomation are to be sent with a word error probability of the use of a biorthogonal code 

word will reduce the required 

received signal energy'bit 
~~ 

noise powedunit bandwidth 

ratio by 3 db under that required for similar performance with bit-by-bit detection. If ten bits are to be sent  with the 

same word error probability, biorthogonal coding reduces the ratio required without coding by 5 db. Orthogonal codes 

are very nearly as effective as biorthogonal codes for n greater than 5, but require twice as much bandwidth. 
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ST/ ( N /  B )  

Fig. 38. Received information rate -biorthogonal codes 

In the limit as  the number of bits per code word and the bandwidth approach infinity, the error probability 

approaches zero for a 

received s ima l  energy/bit 

noise powedunit bandwidth 

ratio greater than In 2, but i t  approaches one when the ratio i s  l e s s  than or equal to In 2. Consequently, the received 

information rate goes stepwise from 0 to 1 /T  bits/sec at this value of the ratio. In the limit, the channel capacity i s  

a linear function of the above ratio. The 

received information rate 

channel capacity 

or channel efficiency, is shown to approach one only when the ratio is In 2. For lower values, the efficiency 

approaches zero, while for higher values the asymptotic behavior is inversely proportional to the ratio. 
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